

Welcome to Project X-Ray

Project X-Ray [https://github.com/SymbiFlow/prjxray] documents the Xilinx [http://www.xilinx.com/] 7-Series FPGA architecture to enable
development of open-source tools. Our goal is to provide sufficient information
to develop a free and open Verilog to bitstream toolchain for these devices.

Xilinx 7-series Architecture

	Overview

	Configuration
	Addressing

	Loading sequence

	Other

	Bitstream format

	Interconnect PIPs
	Fake PIPs

	Regular PIPs

	VCC Drivers

	Bidirectional PIPs

	Distributed RAMs (DRAM / SLICEM)
	Functions

	Configuration

	Glossary

	References
	Xilinx documents one should be familiar with:

	Other documentation that might be of use:

Database Development Process

	Project X-Ray
	Highlevel Bitstream Architecture [http://prjxray.readthedocs.io/en/latest/architecture/overview.html]

	Overview of DB Development Process [http://prjxray.readthedocs.io/en/latest/db_dev_process/overview.html]

	Quickstart Guide
	Step 1:

	Step 2:

	Step 3:

	Step 4:

	Step 5:

	Step 6:

	Step 7:

	Step 8:

	Step 9:

	C++ Development

	Process
	Parts

	Database

	Current Focus
	TODO List

	Contributing
	Sending

	License

	Code of Conduct

	Sign your work

	Contributing to the docs

	Fuzzers
	Configurable Logic Blocks (CLB)

	Block RAM (BRAM)

	Input / Output (IOB)

	Clocking (CMT, PLL, BUFG, etc)

	Programmable Interconnect Points (PIPs)

	Hard Block Fuzzers

	Grid and Wire

	Timing

	All Fuzzers

	Minitests
	CLB_BUSED Minitest

	clb-carry_cin_cyinit Minitest

	clb-configs Minitest

	CLB_MUXF8 Minitest

	clkbuf Minitest

	eccbits Minitest

	FIXEDPNR Minitest

	lvb_long_mux Minitest

	nodes_wires_list Minitest

	FASM Proof of Concept using Vivado Partial Reconfig flow

	Usage

	Using Vivado to generate .fasm

	PICORV32-v Minitest

	PICORV32-y Minitest

	pip-switchboxes Minitest

	ROI_HARNESS Minitest

	Quickstart

	How it works

	tiles_wires_pips Minitest

	util Minitest

	Tools

Output File Formats

	.db Files
	Introduction

	Segment bit positions

	segbits_*.db

	ppips_*.db

	mask_*.db

	.bits example

	.json Files
	Introduction

	tilegrid.json

	tileconn.json

Overview

Todo

add diagrams.

Xilinx 7-Series architecture utilizes a hierarchical design of chainable
structures to scale across the Spartan, Artix, Kintex, and Virtex product
lines. This documentation focuses on the Artix and Kintex devices and omits
some concepts introduced in Virtex devices.

At the top-level, 7-Series devices are divided into two halves
by a virtual horizontal line separating two sets of global clock buffers
(BUFGs). While global clocks can be connected such that they span both sets of
BUFGs, the two halves defined by this division are treated as separate entities
as related to configuration. The halves are referred to simply as the top and
bottom halves.

Each half is next divided vertically into one or more horizontal clock
rows, numbered outward from the global clock buffer
dividing line. Each horizontal clock row contains 12 clock lines that extend
across the device perpendicular to the global clock spine. Similar to the
global clock spine, each horizontal clock row is divided into two halves by two
sets of horizontal clock buffers (BUFHs), one on each side of the global clock
spine, yielding two clock domains. Horizontal clocks
may be used within a single clock domain, connected to span both clock domains
in a horizontal clock row, or connected to global clocks.

Clock domains have a fixed height of 50 interconnect tiles centered around the horizontal clock lines (25 above, 25
below). Various function tiles, such as CLBs, are attached to interconnect
tiles.

Configuration

Within an FPGA, various memories (latches, block RAMs, distributed RAMs)
contain the state of signal routing, BEL configuration, and runtime
storage. Configuration is the process of loading an initial state into all of
these memories both to define the intended logic operations as well as set
initial data for runtime memories. Note that the same mechanisms used for
configuration are also capable of reading out the active state of these
memories as well. This can be used to examine the contents of a block RAM or
other memory at any point in the device’s operation.

Addressing

As described in Overview, 7-Series FPGAs are constructed
out of tiles organized into clock domains. Each tile contains a set of BELs and the memories used
to configure them. Uniquely addressing each of these memories
involves first identifying the horizontal clock row, then the tile within
that row, and finally the specific bit within the tile.

Horizontal clock row addressing follows the hierarchical structure described
in Overview with a single bit used to indicate top or bottom half
and a 5-bit integer to encode the row number. Within the row, tiles are connected to
one or more configuration busses depending on the type of tile and what configuration
memories it contains. These busses are identified by a 3-bit integer:

	Address

	Name

	Connected tile type

	000

	CLB, I/O, CLB

	Interconnect (INT)

	001

	Block RAM content

	Block RAM (BRAM)

	010

	CFG_CLB

	???

Within each bus, the connected tiles are organized into
columns. A column roughly
corresponds to a physical vertical line of tiles perpendicular to and centered over
the horizontal clock row. Each column contains varying amounts of configuration data
depending on the types of tiles attached to that column. Regardless of the amount,
a column’s configuration data is organized into a multiple of frames.
Each frame consists of 101 words with 100 words for the connected tiles and 1 word for
the horizontal clock row. The 7-bit address used to identify a specific frame within
the column is called the minor address.

Putting all these pieces together, a 32-bit frame address is constructed:

	Field

	Bits

	Reserved

	31:26

	Bus

	25:23

	Top/Bottom Half

	22

	Row

	21:17

	Column

	16:7

	Minor

	6:0

CLB, I/O, CLB

Columns on this bus are comprised of 50 directly-attached interconnect tiles with various
kinds of tiles connected behind them. Frames are striped across the interconnect tiles
with each tile receiving 2 words out of the frame. The number of frames in a column
depends on the type of tiles connected behind the interconnect. For example, interconnect
tiles always have 26 frames and a CLBL tile has an additional 12 frames so a column of CLBs
will have 36 frames.

Block RAM content

As the name says, this bus provides access to the block RAM contents.
Block RAM configuration data is accessed via the CLB, I/O, CLB bus. The mapping
of frame words to memory locations is not currently understood.

CFG_CLB

While mentioned in a few places, this bus type has not been seen in any bitstreams for Artix7
so far.

Loading sequence

Todo

Expand on these rough notes.

	Device is configured via a state machine controlled via a set of registers

	CRC of register writes is checked against expected values to verify data
integrity during transmission.

	Before writing frame data:

	IDCODE for configuration’s target device is checked against actual device

	Watchdog timer is disabled

	Start-up sequence clock is selected and configured

	Start-up signal assertion timing is configured

	Interconnect is placed into Hi-Z state

	Data is then written by:

	Loading a starting address

	Selecting the write configuration command

	Writing configuration data to data input register

	Writes must be in multiples of the frame size

	Multi-frame writes trigger autoincrementing of the frame address

	Autoincrement can be disabled via bit in COR1 register.

	At the end of a row, 2 frames of zeros must be inserted before data for the next row.

	After the write has finished, the device is restarted by:

	Strobing a signal to activate IOB/CLB configuration flip-flops

	Reactivate interconnect

	Arms start-up sequence to run after desync

	Desynchronizes the device from the configuration port

	Status register provides detail of start-up phases and which signals are asserted

Other

	ECC of frame data is contained in word 50 alongside horizontal clock row configuration

	Loading will succeed even with incorrect ECC data

	ECC is primarily used for runtime bit-flip detection

Bitstream format

Todo

Expand on rough notes

	Specific byte pattern at beginning of file to allow hardware to determine
width of bus providing configuration data.

	Rest of file is 32-bit big-endian words

	All data before 32-bit synchronization word (0xAA995566) is ignored by
configuration state machine

	Packetized format used to perform register reads/writes

	Three packet header types

	Type 0 packets exist only when performing zero-fill between rows

	Type 1 used for writes up to 4096 words

	Type 2 expands word count field to 27 bits by omitting register address

	Type 2 must always be proceeded by Type 1 which sets register address

	NOP packets are used for inserting required delays

	Most registers only accept 1 word of data

	Allowed register operations depends on interface used to send packets

	Writing LOUT via JTAG is treated as a bad command

	Single-frame FDRI writes via JTAG fail

	CRC

	Calculated automatically from writes: register address and data written

	Expected value is written to CRC register

	If there is a mismatch, error is flagged in status register

	Writes to CRC register can be safely removed from a bitstream

	Alternatively, replace with write to command register to reset calculated
CRC value

	Xilinx BIT header

	Additional information about how bitstream was generated

	Unofficially documented at
http://www.fpga-faq.com/FAQ_Pages/0026_Tell_me_about_bit_files.htm

	Really does require NULL-terminated Pascal strings

	Having this header is the distinction between .bin and .bit in Vivado

	Is ignored entirely by devices

Interconnect PIPs

Fake PIPs

Some PIPs are not “real”, in the sense that no bit pattern in the bit-stream correspond to the PIP being used. This is the case for all the PIPs in the switchbox in a CLB tile (ex: CLBLM_L_INTER): They either correspond to buffers that are always on (i.e. 1:1 connections such as CLBLL_L.CLBLL_L_AQ->CLBLL_LOGIC_OUTS0), or they correspond to permutations of LUT input signals, which is handled by changing the LUT init value accordingly, or they are used to “connect” two signals that are driven by the same signal from within the CLB.

Warning

FIXME: Check the above is true.

The bit switchbox in an INTs tile also contains a few 1:1 connections that are in fact always present and have no corresponding configuration bits.

Regular PIPs

Regular PIPs correspond to a bit pattern that is present in the bit stream when the PIP is used in the current design. There is a block of up to 10-ish bits for each destination signal. For each configuration (i.e. source net that can drive the destination) there is a pair of bits that is set.

Warning

FIXME: Check if the above is true for PIPs outside of the INT switch box.

For example, when the bits 05_57 and 11_56 are set then SR1END3->SE2BEG3 is enabled, but when 08_56 and 11_56 are set then ER1END3->SE2BEG3 is enabled (in an INT_L <INT>`s tile paired with a CLBLL_L tile). A configuration in which all three bits are set is invalid. See `segbits_int_[lr].db for a complete list of bit pattern for configuring PIPs.

VCC Drivers

The default state for a net is to be driven high. The PIPs that drive a net from VCC_WIRE correspond to the “empty configuration” with no bits set.

Bidirectional PIPs

Bidirectional PIPs are used to stitch together long traces (LV*, LVB*). In case of bidirectional PIPs there are two different configuration patterns, one for each direction.

Distributed RAMs (DRAM / SLICEM)

The SLICEM site can turn the 4 LUT6s into distributed RAMs. There are a number of modes, each element is either a 64x1 or a 32x2 distributed RAM (DRAM). The individual elements can be combined into either a 128x1 or 256x1 DRAM.

Functions

Modes

Some modes can be enabled at the single LUT level. The following modes are:

	32x2 Single port (32x2S)

	32x2 Dual port (32x2D)

	64x1 Single port (64x1S)

	64x1 Dual port (64x1D)

Some modes are SLICEM wide:

	128x1 Single port (128x1S)

	128x1 Dual port (128x1D)

	256x1

Ports

Each LUT element when operating in RAM mode is a DPRAM64.

	Port name

	Direction

	Width

	Description

	WA

	IN

	8

	Write address

	A

	IN

	6

	Read address

	DI

	IN

	2

	Data input

	WE

	IN

	1

	Write enable

	CLK

	IN

	1

	Clock

	O6

	OUT

	1

	Data output 1

	O5

	OUT

	1

	Data output 2

Configuration

The configuration for the DRAM is found in the following segbits:

	ALUT.RAM

	ALUT.SMALL

	ADI1MUX.AI

	BLUT.RAM

	BLUT.SMALL

	BDI1MUX.BI

	CLUT.RAM

	CLUT.SMALL

	CDI1MUX.CI

	DLUT.RAM

	DLUT.SMALL

	WA7USED

	WA8USED

In order to use DRAM in a SLICEM, the DLUT in the SLICEM must be a RAM (e.g. DLUT.RAM).
In addition the DLUT can never be a dual port RAM because the write address lines for the DLUT are also the read address lines.

Segbits for modes

The following table shows the features required for each mode type for each LUT.

	LUTs

	32x2S

	32x2D

	64x1S

	64x1D

	D

	DLUT.RAM

DLUT.SMALL

	N/A

	DLUT.RAM

	N/A

	C

	CLUT.RAM

CLUT.SMALL

CDI1MUX.CI

	CLUT.RAM

CLUT.SMALL

	CLUT.RAM

CDI1MUX.CI

	CLUT.RAM

	B

	BLUT.RAM

BLUT.SMALL

BDI1MUX.CI

	BLUT.RAM

BLUT.SMALL

	BLUT.RAM

BDI1MUX.CI

	BLUT.RAM

	A

	ALUT.RAM

ALUT.SMALL

ADI1MUX.CI

	ALUT.RAM

ALUT.SMALL

	ALUT.RAM

ADI1MUX.CI

	ALUT.RAM

Ports for modes

In each mode, how the ports are used vary. The following table show the relationship between the LUT mode and ports.

	LUTs

	32x2S

	32x2D

	64x1S

	64x1D

	D

	WA[4:0] = A[4:0] = {D5,D4,D3,D2,D1}

DI[1:0] = {DX, DI}

	N/A

	WA[5:0] = A[5:0] = {D6,D5,D4,D3,D2,D1}

DI[0] = DI

	N/A

	C

	WA[4:0] = A[4:0] = {C5,C4,C3,C2,C1}

DI[1:0] = {CX, CI}

	WA[4:0] = {D5,D4,D3,D2,D1}

A[4:0] = {C5,C4,C3,C2,C1}

DI[1:0] = {CX,DI}

	WA[5:0] = A[5:0] = {C6,C5,C4,C3,C2,C1}

DI[0] = CI

	WA[5:0] = {D6,D5,D4,D3,D2,D1}

A[5:0] = {C6,C5,C4,C3,C2,C1}

DI[0] = DI

	B

	WA[4:0] = A[4:0] = {B5,B4,B3,B2,B1}

DI[1:0] = {BX, BI}

	WA[4:0] = {D5,D4,D3,D2,D1}

A[4:0] = {B5,B4,B3,B2,B1}

DI[1:0] = {BX,DI}

	WA[5:0] = A[5:0] = {B6,B5,B4,B3,B2,B1}

DI[0] = BI

	WA[5:0] = {D6,D5,D4,D3,D2,D1}

A[5:0] = {B6,B5,B4,B3,B2,B1}

DI[0] = DI

	A

	WA[4:0] = A[4:0] = {A5,A4,A3,A2,A1}

DI[1:0] = {AX, AI}

	WA[4:0] = {D5,D4,D3,D2,D1}

A[4:0] = {A5,A4,A3,A2,A1}

DI[1:0] = {AX,BLUT.DI[0]}

	WA[5:0] = A[5:0] = {A6,A5,A4,A3,A2,A1}

DI[0] = AI

	WA[5:0] = {D6,D5,D4,D3,D2,D1}

A[5:0] = {A6,A5,A4,A3,A2,A1}

DI[0] = BLUT.DI[0]

Techlib macros

The tech library exposes the following aggregate modes, which are accomplished with the following combinations.

	Macro

	Option 1

	Option 2

	Option 3

	Option 4

	RAM32M

	DLUT = 32x2S

CLUT = 32x2D

BLUT = 32x2D

ALUT = 32x2D

	
	
	

	RAM32X1D

	DLUT = 32x2S

CLUT = 32x2D

	BLUT = 32x2S

ALUT = 32x2D

	
	

	RAM32X1S

	DLUT = 32x1S

	CLUT = 32x1S

	BLUT = 32x1S

	ALUT = 32x1S

	RAM32X2S

	DLUT = 32x2S

CLUT = 32x2D

	BLUT = 32x2S

ALUT = 32x2D

	
	

	RAM64M

	DLUT = 64x1S

CLUT = 64x1D

BLUT = 64x1D

ALUT = 64x1D

	
	
	

	RAM64X1D

	DLUT = 64x1S

CLUT = 64x1D

	BLUT = 64x1S

ALUT = 64x1D

	
	

	RAM64X1S

	DLUT = 64x1S

	CLUT = 64x1S

	BLUT = 64x1S

	ALUT = 64x1S

Glossary

	ASIC

	An application-specific integrated circuit (ASIC) is a chip that is
designed and used for a specific purpose, such as video acceleration,
machine learning acceleration, and many more purposes. In contrast to
FPGAs, the programming of an ASIC is fixed at the time of
manufacture.

	basic element	BEL	basic logic element	BLE

	Basic elements (BELs) or basic logic element (BLEs)
are the basic logic units in an FPGA, including
carry or fast adders (CFAs), flip flops (FFs),
lookup tables (LUTs), multiplexers (MUXes), and
other element types. Note: Programmable interconnects (PIPs)
are not counted as BELs.

BELs come in two forms:

	Basic BEL - A logic unit which does things.

	Routing BEL - A unit which is statically configured at routing time.

	Bitstream

	Binary data that is directly loaded into an FPGA to perform
configuration. Contains configuration frames as well as
programming sequences and other commands required to load and activate same.

	Block RAM

	Block RAM is inbuilt, configurable memory on an FPGA, able to store
more data than the flip flops. The block RAM can function as
dual or single-port memory. Xilinx 7 series devices offer a number of 36 Kb
block RAMs, each with two independently controlled 18 Kb RAMs. The number of
block RAMs available depends on the specific device.

	CFA

	A carry or fast adder (CFA) is a logic element on the FPGA that
performs fast arithmetic operations.

	Clock

	A clock is a square-wave timing signal (50% on, 50% off) generated by an
external oscillator and passed into the FPGA. The clock frequency
drives the sequential logic elements in the FPGA, most importantly
the flip flops. For example, the FPGA may use a
50 megahertz clock. An FGPA can use one or more clocks and can thus have
one or more clock domains.

	Clock backbone	Clock spine

	In Xilinx 7 series devices, the clock backbone or clock spine divides the
clock regions on the device into two sides, the left
and the right side.

	Clock domain

	Portion of the device controlled by one clock. A clock domain is
part of a horizontal clock row to one side of the global
clock spine. The term also often refers to the
tiles that are associated with these clocks.

	Clock region

	Portion of a device including up to 12 clock domains.
A clock region is situated to the left or right of the global clock spine,
and is 50 CLBs tall on Xilinx 7 series devices. The clock
region includes all synchronous elements in the 50 CLBs and one I/O bank,
with a horizontal clock row at its center.

	Column

	A term used in bitstream configuration to denote
a collection of tiles, physically organized as
a vertical line, and configured by the same set of configuration frames.
Logic columns span 50 tiles vertically and 2 tiles horizontally
(pairs of logic tiles and interconnect tiles).

	Configurable logic block	CLB

	A configurable logic block (CLB) is the configurable logic unit of an
FPGA. Also called a logic cell. A CLB is a combination of basic
logic elements (BELs).

	Database

	Text files containing meaningful labels for bit positions within
segments.

	Fabric sub region	FSR

	Another name for clock region.

	Flip flop	FF

	A flip flop (FF) is a logic element on the FPGA that stores state.

	FPGA

	A field-programmable gate array (FPGA) is a reprogrammable integrated
circuit, or chip. Reprogrammable means you can reconfigure the integrated
circuit for different types of computing. You define the configuration via a
hardware definition language (HDL). The word “field” in
field-programmable gate array means the circuit is programmable
in the field, as opposed to during chip manufacture.

	Frame

	The fundamental unit of bitstream configuration data consisting of
101 words.
Each frame has a 32-bit frame address and 101 payload words, 32 bits each.
The 50th payload word is an EEC.
The 7 LSB bits of the frame address are the frame index within the
configuration column (called minor frame address in the Xilinx
documentation). The rest of the frame address identifies the configuration
column (called base frame address in Project X-Ray nomenclature).

The bits in an individual frame are spread out over the entire column.
For example, in a logic column with 50 tiles, the first tile is configured
with the first two words in each frame, the next tile with the next two
words, and so on.

	Frame base address

	The first configuration frame address for a column. A frame base
address has always the 7 LSB bits cleared.

	Fuzzer

	Scripts and a makefile to generate one or more specimens
and then convert the data from those specimens into a database.

	Half

	Portion of a device defined by a virtual line dividing the two sets of
global clock buffers present in a device. The two halves are
referred to as the top and bottom halves.

	HDL

	You use a hardware definition language (HDL) to describe the behavior of an
electronic circuit. Popular HDLs include Verilog (inspired by C) and VHDL
(inspired by Ada).

	Horizontal clock row	HROW

	Portion of a device including 12 horizontal clocks and the
50 interconnect and function tiles associated with them. A half
contains one or more horizontal clock rows and each half may have a
different number of rows.

	I/O block

	One of the configurable input/output blocks that connect the FPGA
to external devices.

	Interconnect tile	INT

	An interconnect tile (INT_L, INT_R) is used to connect other tiles to
the fabric. It is also frequently called a switch box.

	LUT

	A lookup table (LUT) is a logic element on the FPGA. LUTs function
as a ROM, apply combinatorial logic, and generate the output value for a
given set of inputs.

	MUX

	A multiplexer (MUX) is a multi-input, single-output switch controled by
logic.

	Node

	A routing node on the device. A node is a collection of wires
spanning one or more tiles.
Nodes that are local to a tile map 1:1 to a wire. A node that spans multiple
tiles maps to multiple wires, one in each tile it spans.

	PIP	Programmable interconnect point

	A programmable interconnect point (PIP) is a connection point between two
wires in a tile that may be enabled or disabled by the configuration.

	PnR	Place and route

	Place and route (PnR) is the process of taking logic and placing it into
hardware logic elements on the FPGA, and then routing the signals
between the placed elements.

	Region of interest	ROI

	Region of interest (ROI) is used in Project X-Ray to denote a
rectangular region on the FPGA that is the focus of our study.
The current region of interest is SLICE_X12Y100:SLICE_X27Y149
on a xc7a50tfgg484-1 chip.

	Routing fabric

	The wires and programmable interconnects (PIPs)
connecting the logic blocks in an FPGA.

	Segment

	All configuration bits for a horizontal slice of a column.
This corresponds to two ranges: a range of frames
and a range of words within frames. A segment of a logic
column is 36 frames wide and 2 words high.

	Site

	Portion of a tile where BELs can be placed. The
slices in a CLB tile are sites.

	Slice

	Portion of a tile that contains BELs.
A CLBLL_L/CLBLL_R tile contains two SLICEL slices.
A CLBLM_L/CLBLM_R tile contains one SLICEL slice and one SLICEM slice.
SLICEL and SLICEM are the most common types of slice, containing the
LUTs and flip flops that are the basic logic
units of the FPGA.

	Specimen

	A bitstream of a (usually auto-generated) design with additional
files containing information about the placed and routed design.
These additional files are usually generated using Vivado TCL scripts
querying the Vivado design database.

	Tile

	Fundamental unit of physical structure containing a single type of
resource or function. A container for sites and
slices. The FPGA chip is a grid of tiles.

The most important tile types are left and right interconnect tiles
(INT_L and INT_R) and left and right CLB logic/memory tiles
(CLBLL_L, CLBLL_R, CLBLM_L, CLBLM_R).

	Wire

	Physical wire within a tile.

	Word

	32 bits stored in big-endian order. Fundamental unit of bitstream
format.

 References

References

Xilinx documents one should be familiar with:

UG470: 7 Series FPGAs Configuration User Guide

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Chapter 5: Configuration Details contains a good description of the overall
bit-stream format. (See section “Bitstream Composition” and following.)

UG912: Vivado Design Suite Properties Reference Guide

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug912-vivado-properties.pdf

Contains an excellent description of the in-memory data structures and
associated properties Vivado uses to describe the design and the chip. The TCL
interface provides a convenient interface to access this information.

UG903: Vivado Design Suite User Guide: Using Constraints

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug903-vivado-using-constraints.pdf

The fuzzers generate designs (HDL + Constraints) that use many physical
contraints constraints (placement and routing) to produce bit-streams with
exactly the desired features. It helps to learn about the available constraints
before starting to write fuzzers.

UG901: Vivado Design Suite User Guide: Synthesis

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug901-vivado-synthesis.pdf

Chapter 2: Synthesis Attributes contains an overview of the Verilog
attributes that can be used to control Vivado Synthesis. Many of them
are useful for writing fuzzer designs. There is some natural overlap
with UG903.

UG909: Vivado Design Suite User Guide: Partial Reconfiguration

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug909-vivado-partial-reconfiguration.pdf

Among other things this UG contains some valuable information on how to constrain a design in a way so that the items inside a pblock are strictly separate from the items outside that pblock.

UG474: 7 Series FPGAs Configurable Logic Block

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Describes the capabilities of a CLB, the most important non-interconnect resource of a Xilinx FPGA.

Other documentation that might be of use:

Doc of .bit container file format:
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf

Open-Source Bitstream Generation for FPGAs, Ritesh K Soni, Master Thesis:
https://vtechworks.lib.vt.edu/bitstream/handle/10919/51836/Soni_RK_T_2013.pdf

VTR-to-Bitstream, Eddie Hung:
https://eddiehung.github.io/vtb.html

From the bitstream to the netlist, Jean-Baptiste Note and Éric Rannaud:
http://www.fabienm.eu/flf/wp-content/uploads/2014/11/Note2008.pdf

Wolfgang Spraul’s Spartan-6 (xc6slx9) project:
https://github.com/Wolfgang-Spraul/fpgatools

Marek Vasut’s Typhoon Cyclone IV project:
http://git.bfuser.eu/?p=marex/typhoon.git

XDL generator/imported for Vivado:
https://github.com/byuccl/tincr

 Project X-Ray

Project X-Ray

[image: ../_images/prjxray.svg]Build Status
[image: ../_images/1e5494302ff847050d775a2e38ddb86ba449ca69.svg]Documentation Status
[image: ../_images/prjxray1.svg]License

Documenting the Xilinx 7-series bit-stream format.

This repository contains both tools and scripts which allow you to document the
bit-stream format of Xilinx 7-series FPGAs.

More documentation can be found published on prjxray ReadTheDocs site [http://prjxray.readthedocs.io/en/latest/] - this includes;

	Highlevel Bitstream Architecture [http://prjxray.readthedocs.io/en/latest/architecture/overview.html]

	Overview of DB Development Process [http://prjxray.readthedocs.io/en/latest/db_dev_process/overview.html]

Quickstart Guide

Instructions were originally written for Ubuntu 16.04. Please let us know if you have information on other distributions.

Step 1:

Install Vivado 2017.2. If you did not install to /opt/Xilinx default, then set the environment variable
XRAY_VIVADO_SETTINGS to point to the settings64.sh file of the installed vivado version, ie

export XRAY_VIVADO_SETTINGS=/opt/Xilinx/Vivado/2017.2/settings64.sh

Do not source the settings64.sh in your shell, since this adds directories of
the Vivado installation at the beginning of your PATH and LD_LIBRARY_PATH
variables, which will likely interfere with or break non-Vivado applications in
that shell. The Vivado wrapper utils/vivado.sh makes sure that the environment
variables from XRAY_VIVADO_SETTINGS are automatically sourced in a separate
shell that is then only used to run Vivado to avoid these problems.

Step 2:

Pull submodules:

git submodule update --init --recursive

Step 3:

Install CMake:

sudo apt-get install cmake # version 3.5.0 or later required,
 # for Ubuntu Trusty pkg is called cmake3

Step 4:

Build the C++ tools:

make build

Step 5:

(Option 1) - Install the Python environment locally

sudo apt-get install virtualenv python3-virtualenv python3-yaml
make env

(Option 2) - Install the Python environment globally

sudo apt-get install python3-yaml
sudo pip3 install -r requirements.txt

This step is known to fail with a compiler error while building the pyjson5
library when using Arch Linux and Fedora. pyjson5 needs one change to build
correctly:

git clone https://github.com/Kijewski/pyjson5.git
cd pyjson5
sed -i 's/char *PyUnicode/const char *PyUnicode/' src/_imports.pyx
sudo make

This might give you and error about sphinx_autodoc_typehints but it should
correctly build and install pyjson5. After this, run either option 1 or 2 again.

Step 6:

Always make sure to set the environment for the device you are working on before
running any other commands:

source settings/artix7.sh

Step 7:

(Option 1, recommended) - Download a current stable version (you can use the
Python API with a pre-generated database)

./download-latest-db.sh

(Option 2) - (Re-)create the entire database (this will take a very long time!)

cd fuzzers
make -j$(nproc)

Step 8:

Pick a fuzzer (or write your own) and run:

cd fuzzers/010-lutinit
make -j$(nproc) run

Step 9:

Create HTML documentation:

cd htmlgen
python3 htmlgen.py

C++ Development

Tests are not built by default. Setting the PRJXRAY_BUILD_TESTING option to
ON when running cmake will include them:

cmake -DPRJXRAY_BUILD_TESTING=ON ..
make

The default C++ build configuration is for releases (optimizations enabled, no
debug info). A build configuration for debugging (no optimizations, debug info)
can be chosen via the CMAKE_BUILD_TYPE option:

cmake -DCMAKE_BUILD_TYPE=Debug ..
make

The options to build tests and use a debug build configuration are independent
to allow testing that optimizations do not cause bugs. The build configuration
and build tests options may be combined to allow all permutations.

Process

The documentation is done through a “black box” process were Vivado is asked to
generate a large number of designs which then used to create bitstreams. The
resulting bit streams are then cross correlated to discover what different bits
do.

Parts

Minitests

There are also “minitests” which are designs which can be viewed by a human in
Vivado to better understand how to generate more useful designs.

Experiments

Experiments are like “minitests” except are only useful for a short period of
time. Files are committed here to allow people to see how we are trying to
understand the bitstream.

When an experiment is finished with, it will be moved from this directory into
the latest “prjxray-experiments-archive-XXXX” repository.

Fuzzers

Fuzzers are the scripts which generate the large number of bitstream.

They are called “fuzzers” because they follow an approach similar to the
idea of software testing through fuzzing [https://en.wikipedia.org/wiki/Fuzzing].

Tools & Libs

Tools & libs are useful tools (and libraries) for converting the resulting
bitstreams into various formats.

Binaries in the tools directory are considered more mature and stable then
those in the utils directory and could be actively used in other
projects.

Utils

Utils are various tools which are still highly experimental. These tools should
only be used inside this repository.

Third Party

Third party contains code not developed as part of Project X-Ray.

Database

Running the all fuzzers in order will produce a database which documents the
bitstream format in the database directory.

As running all these fuzzers can take significant time,
Tim ‘mithro’ Ansell me@mith.ro [https://github.com/mithro] has graciously
agreed to maintain a copy of the database in the
prjxray-db [https://github.com/SymbiFlow/prjxray-db] repository.

Please direct enquires to Tim if there are any issues with
it.

Current Focus

Current the focus has been on the Artix-7 50T part. This structure is common
between all footprints of the 15T, 35T and 50T varieties.

We have also started experimenting with the Kintex-7 parts.

The aim is to eventually document all parts in the Xilinx 7-series FPGAs but we
can not do this alone, we need your help!

TODO List

	[] Write a TODO list

Contributing

There are a couple of guidelines when contributing to Project X-Ray which are
listed here.

Sending

All contributions should be sent as
GitHub Pull requests [https://help.github.com/articles/creating-a-pull-request-from-a-fork/].

License

All software (code, associated documentation, support files, etc) in the
Project X-Ray repository are licensed under the very permissive
ISC Licence. A copy can be found in the COPYING file.

All new contributions must also be released under this license.

Code of Conduct

By contributing you agree to the code of conduct. We
follow the open source best practice of using the Contributor
Covenant [https://www.contributor-covenant.org/] for our Code of Conduct.

Sign your work

To improve tracking of who did what, we follow the Linux Kernel’s
“sign your work” system [https://github.com/wking/signed-off-by].
This is also called a
“DCO” or “Developer’s Certificate of Origin” [https://developercertificate.org/].

All commits are required to include this sign off and we use the
Probot DCO App [https://github.com/probot/dco] to check pull requests for
this.

The sign-off is a simple line at the end of the explanation for the
patch, which certifies that you wrote it or otherwise have the right to
pass it on as a open-source patch. The rules are pretty simple: if you
can certify the below:

 Developer's Certificate of Origin 1.1

 By making a contribution to this project, I certify that:

 (a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

 (b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

 (c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

then you just add a line saying

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

You can add the signoff as part of your commit statement. For example:

git commit --signoff -a -m "Fixed some errors."

Hint: If you’ve forgotten to add a signoff to one or more commits, you can use the
following command to add signoffs to all commits between you and the upstream
master:

git rebase --signoff upstream/master

Contributing to the docs

In addition to the above contribution guidelines, see the guide to
updating the Project X-Ray docs.

 Fuzzers

Fuzzers

Fuzzers are things that generate a design, feed it to Vivado, and look at the resulting bitstream to make some conclusion.
This is how the contents of the database are generated.

The general idea behind fuzzers is to pick some element in the device (say a block RAM or IOB) to target.
If you picked the IOB (no one is working on that yet), you’d write a design that is implemented in a specific IOB.
Then you’d create a program that creates variations of the design (called specimens) that vary the design parameters, for example, changing the configuration of a single pin.

A lot of this program is TCL that runs inside Vivado to change the design parameters, because it is a bit faster to load in one Verilog model and use TCL to replicate it with varying inputs instead of having different models and loading them individually.

By looking at all the resulting specimens, you can correlate which bits in which frame correspond to a particular choice in the design.

Looking at the implemented design in Vivado with “Show Routing Resources” turned on is quite helpful in understanding what all choices exist.

Configurable Logic Blocks (CLB)

	clb-ffconfig Fuzzer

	clb-ffsrcemux Fuzzer

	clb-lutinit Fuzzer

	clb-n5ffmux Fuzzer

	clb-ncy0 Fuzzer

	clb-ndi1mux Fuzzer

	clb-nffmux Fuzzer

	clb-noutmux Fuzzer

	clb-precyinit Fuzzer

	clb-ram Fuzzer

Block RAM (BRAM)

	bram-cascades Fuzzer

	BRAM Configuration

	BRAM Data

	bram-fifo-config Fuzzer

	bram36-config Fuzzer

Input / Output (IOB)

	IOB Fuzzer

	iob-ilogic Fuzzer

	iob-ologic Fuzzer

Clocking (CMT, PLL, BUFG, etc)

	clk-bufg-config Fuzzer

	BUFG interconnect fuzzer

	clk-hrow-config Fuzzer

	clk-hrow-pips Fuzzer

	clk-rebuf-pips Fuzzer

	HCLK_CMT interconnect fuzzer

	Fuzzer for INT PIPs driving the CLK wires

	Fuzzer for PIPs in HCLK titles

	MMCM

	Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

Programmable Interconnect Points (PIPs)

	int-imux-gfan Fuzzer

	int-piplist Fuzzer

	BUFG interconnect fuzzer

	clk-hrow-pips Fuzzer

	clk-rebuf-pips Fuzzer

	HCLK_CMT interconnect fuzzer

	Fuzzer for bidirectional INT PIPs

	Fuzzer for INT PIPs driving the CLK wires

	Fuzzer for INT PIPs driving the CTRL wires

	Fuzzer for the ALT_FAN.*GFAN PIPs

	Fuzzer for INT PIPs driving the GFAN wires with GND

	Fuzzer for PIPs in HCLK titles

	Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

	Fuzzer for the remaining INT PIPs

	Generic fuzzer for INT PIPs

	piplist Fuzzer

	ppips Fuzzer

Hard Block Fuzzers

	XADC Fuzzer

Grid and Wire

	Tilegrid Fuzzer

	ordered_wires Fuzzer

	get_counts Fuzzer

	dump_all Fuzzer

Timing

	Timing analysis fuzzer (timfuz)

All Fuzzers

	bram-cascades Fuzzer

	BRAM Configuration

	BRAM Data

	bram-fifo-config Fuzzer

	bram36-config Fuzzer

	clb-ffconfig Fuzzer

	clb-ffsrcemux Fuzzer

	clb-lutinit Fuzzer

	clb-n5ffmux Fuzzer

	clb-ncy0 Fuzzer

	clb-ndi1mux Fuzzer

	clb-nffmux Fuzzer

	clb-noutmux Fuzzer

	clb-precyinit Fuzzer

	clb-ram Fuzzer

	clk-bufg-config Fuzzer

	BUFG interconnect fuzzer

	clk-hrow-config Fuzzer

	clk-hrow-pips Fuzzer

	clk-rebuf-pips Fuzzer

	MMCM

	Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

	dsp-mskpat Fuzzer

	dump_all Fuzzer

	fifo-config Fuzzer

	get_counts Fuzzer

	HCLK_CMT interconnect fuzzer

	init-db Fuzzer

	int-imux-gfan Fuzzer

	int-piplist Fuzzer

	IOB Fuzzer

	iob-ilogic Fuzzer

	iob-ologic Fuzzer

	XADC Fuzzer

	ordered_wires Fuzzer

	part-yaml Fuzzer

	pins Fuzzer

	Fuzzer for bidirectional INT PIPs

	Fuzzer for INT PIPs driving the CLK wires

	Fuzzer for INT PIPs driving the CTRL wires

	Fuzzer for the ALT_FAN.*GFAN PIPs

	Fuzzer for INT PIPs driving the GFAN wires with GND

	Fuzzer for PIPs in HCLK titles

	Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

	Fuzzer for the remaining INT PIPs

	Generic fuzzer for INT PIPs

	piplist Fuzzer

	ppips Fuzzer

	Tilegrid Fuzzer

	Timing analysis fuzzer (timfuz)

Minitests

Minitests are experiments to figure out how things work. They allow us to understand how to better write new fuzzers.

Current Minitests

	CLB_BUSED Minitest

	clb-carry_cin_cyinit Minitest

	clb-configs Minitest

	CLB_MUXF8 Minitest

	clkbuf Minitest

	eccbits Minitest

	FIXEDPNR Minitest

	lvb_long_mux Minitest

	nodes_wires_list Minitest

	FASM Proof of Concept using Vivado Partial Reconfig flow

	Usage

	Using Vivado to generate .fasm

	PICORV32-v Minitest

	PICORV32-y Minitest

	pip-switchboxes Minitest

	ROI_HARNESS Minitest

	Quickstart

	How it works

	tiles_wires_pips Minitest

	util Minitest

Tools

SymbiFlow/prjxray/tools/

Here, you can find various programs to work with bitstreams, mainly to assist building fuzzers.

 clb-ffconfig Fuzzer

clb-ffconfig Fuzzer

Documents FF configuration.

Note Vivado GUI is misleading in some cases where it shows configuration per FF, but its actually per SLICE

Primitive pin map

	Element
	CE
	CK
	D
	SR
	Q

	FDRE
	CE
	C
	D
	R
	Q

	FDPE
	CE
	C
	D
	PRE
	Q

	FDSE
	CE
	C
	D
	S
	Q

	FDCE
	CE
	C
	D
	CLR
	Q

	LDPE
	GE
	G
	D
	PRE
	Q

	LDCE
	GE
	G
	D
	CLR
	Q

Primitive bit map

	Prim
	FFSYNC
	LATCH
	ZRST

	FDPE
	
	
	

	FDSE
	X
	
	

	FDRE
	X
	
	X

	FDCE
	
	
	X

	LDCE
	
	X
	X

	LDPE
	
	X
	

FFSYNC

Configures whether a storage element is synchronous or asynchronous.

Scope: entire site (not individual FFs)

	FFSYNC
	Reset
	Applicable prims

	0
	Synchronous
	FDPE, FDCE, LDCE, LDPE

	1
	Asynchronous
	FDSE, FDRE

LATCH

Configures latch vs FF behavior for the CLB

	LATCH
	Description
	Primitives

	0
	All storage elements in the CLB are FF's
	FDPE, FDSE, FDRE, FDCE

	1
	LUT6 storage elements are latches (LDCE or LDPE). LUT5 storage elements cannot be used
	LDCE, LDPE

N*FF.ZRST

Configures stored value when reset is asserted

	Prim
	ZRST
	On reset

	FDRE, FDCE, and LDCE
	0
	1

	FDRE, FDCE, and LDCE
	1
	0

	FDPE, FDSE, and LDPE
	0
	0

	FDPE, FDSE, and LDPE
	1
	1

N*FF.ZINI

Sets GSR FF or latch value

	LATCH
	ZINI
	Set to

	FF
	0
	1

	FF
	1
	0

	LATCH
	0
	0

	LATCH
	1
	1

CEUSEDMUX

Configures ability to drive clock enable (CE) or always enable clock

	CEUSEDMUX
	Description

	0
	always on (CE=1)

	1
	controlled (CE=mywire)

SRUSEDMUX

Configures ability to reset FF after GSR

	SRUSEDMUX
	Description

	0
	never reset (R=0)

	1
	controlled (R=mywire)

TODO: how used when SR?

CLKINV

Configures whether to invert the clock going into a slice.

Scope: entire site (not individual FFs)

	LATCH
	CLKINV
	Description

	FF
	0
	normal clock

	FF
	1
	invert clock

	LATCH
	0
	invert clock

	LATCH
	1
	normal clock

 clb-ffsrcemux Fuzzer

clb-ffsrcemux Fuzzer

CEUSEDMUX

Configures whether clock enable (CE) is used or clock always on

	CEUSEDMUX
	CE

	0
	Always on

	1
	Controlled

SRUSEDMUX

Configures whether FF can be reset or simply uses D value

	SRUSEDMUX
	Resettable?

	0
	No

	1
	Controlled

XXX: How used when SR?

 clb-lutinit Fuzzer

clb-lutinit Fuzzer

NLUT.INIT

Sites: CLBL[LM]_[LR].SLICE[LM]_X[01] (all CLB)

Sets the LUT6 INIT property

 clb-n5ffmux Fuzzer

clb-n5ffmux Fuzzer

N5FFMUX

The A5FFMUX family of CLB muxes feed the D input of A5FF family of FFs

	N5FFMUX
	N5FFMUX.D

	IN_A
	N5LUT.O5

	IN_B
	NX

 clb-ncy0 Fuzzer

clb-ncy0 Fuzzer

CARRY4.NCY0

The ACY0 family of CLB muxes feeds the CARRY4.DI0 family

	NCY0
	CARRY4.DIN

	0
	NX

	1
	O5

 clb-ndi1mux Fuzzer

clb-ndi1mux Fuzzer

NDI1MUX

Configures the NDI1MUX mux which provides the DI1 input on CLB RAM.

Available selections varies by A/B/C/D, see db for details.

 clb-nffmux Fuzzer

clb-nffmux Fuzzer

NFFMUX

Configures the AFFMUX family of CLB muxes which feed the D input of the AFF series of FFs.

Available selections varies by A/B/C/D, see db for details.

 clb-noutmux Fuzzer

clb-noutmux Fuzzer

[A-D]FFMUX

Configures the AOUTMUX family of CLB muxes which feed the AMUX family of CLB outputs

Available selections varies by A/B/C/D, see db for details.

 clb-precyinit Fuzzer

clb-precyinit Fuzzer

PRECYINIT

Configures the PRECYINIT mux which provides CARRY4’s first carry chain input

	PRECYINIT
	Value

	C0
	Logic 0

	C1
	Logic 1

	AX
	AX CLB input

	CIN
	Carry in from adjacent CLB COUT

 clb-ram Fuzzer

clb-ram Fuzzer

	Primitive
	RAM
	SMALL
	SRL

	LUT6
	
	
	

	SRL16E
	
	X
	X

	SRLC32E
	
	
	X

	RAM32X1S
	X
	X
	

	RAM64X1S
	X
	
	

	RAM32M
	X
	X
	

	RAM32X1D
	X
	X
	

	RAM64M
	X
	
	

	RAM64X1D
	X
	
	

	RAM128X1D
	X
	
	

	RAM256X1S
	X
	
	

	RAM128X1S
	X
	
	

NLUT.RAM

Set to make a RAM* family primitive, otherwise is a SRL or LUT function generator.

NLUT.SMALL

Seems to be set on smaller primitives.

NLUT.SRL

Whether to make a shift register LUT (SRL). Set when using SRL16E or SRLC32E

WA7USED

Set to 1 to propagate CLB’s CX input to WA7

WA8USED

Set to 1 to propagate CLB’s BX input to WA8

WEMUX.CE

	WEMUX.CE
	CLB RAM write enable

	0
	CLB WE input

	1
	CLB CE input

 bram-cascades Fuzzer

bram-cascades Fuzzer

Missing README.md!

 BRAM Configuration

BRAM Configuration

Solves for BRAM configuration bits (18K vs 36K, etc)

 BRAM Data

BRAM Data

Solves for BRAM data bits

See workflow comments: https://github.com/SymbiFlow/prjxray/pull/180

 bram-fifo-config Fuzzer

bram-fifo-config Fuzzer

Missing README.md!

 bram36-config Fuzzer

bram36-config Fuzzer

Missing README.md!

 IOB Fuzzer

IOB Fuzzer

 iob-ilogic Fuzzer

iob-ilogic Fuzzer

Missing README.md!

 iob-ologic Fuzzer

iob-ologic Fuzzer

Missing README.md!

 clk-bufg-config Fuzzer

clk-bufg-config Fuzzer

Missing README.md!

 BUFG interconnect fuzzer

BUFG interconnect fuzzer

Solves pips located within the BUFG switch box.

 clk-hrow-config Fuzzer

clk-hrow-config Fuzzer

Missing README.md!

 clk-hrow-pips Fuzzer

clk-hrow-pips Fuzzer

Missing README.md!

 clk-rebuf-pips Fuzzer

clk-rebuf-pips Fuzzer

Missing README.md!

 HCLK_CMT interconnect fuzzer

HCLK_CMT interconnect fuzzer

Solves pips located within the HCLK_CMT switch box.

 Fuzzer for INT PIPs driving the CLK wires

Fuzzer for INT PIPs driving the CLK wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for PIPs in HCLK titles

Fuzzer for PIPs in HCLK titles

Run this fuzzer once.

It cannot solve HCLK.HCLK_CK_INOUT_* family

 MMCM

MMCM

MMCME2_ADV in UG953 [https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug953-vivado-7series-libraries.pdf] lists the available attributes.

 Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

FIXME: Add description.

 int-imux-gfan Fuzzer

int-imux-gfan Fuzzer

Missing README.md!

 int-piplist Fuzzer

int-piplist Fuzzer

Missing README.md!

 BUFG interconnect fuzzer

BUFG interconnect fuzzer

Solves pips located within the BUFG switch box.

 clk-hrow-pips Fuzzer

clk-hrow-pips Fuzzer

Missing README.md!

 clk-rebuf-pips Fuzzer

clk-rebuf-pips Fuzzer

Missing README.md!

 HCLK_CMT interconnect fuzzer

HCLK_CMT interconnect fuzzer

Solves pips located within the HCLK_CMT switch box.

 Fuzzer for bidirectional INT PIPs

Fuzzer for bidirectional INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for INT PIPs driving the CLK wires

Fuzzer for INT PIPs driving the CLK wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for INT PIPs driving the CTRL wires

Fuzzer for INT PIPs driving the CTRL wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for the ALT_FAN.*GFAN PIPs

Fuzzer for the ALT_FAN.*GFAN PIPs

This fuzzer solves the ALT_FAN.GFAN PIPs which had collisions with the GFAN PIPs.

 Fuzzer for INT PIPs driving the GFAN wires with GND

Fuzzer for INT PIPs driving the GFAN wires with GND

Run this fuzzer once.

 Fuzzer for PIPs in HCLK titles

Fuzzer for PIPs in HCLK titles

Run this fuzzer once.

It cannot solve HCLK.HCLK_CK_INOUT_* family

 Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for the remaining INT PIPs

Fuzzer for the remaining INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

This fuzzer occationally fails (depending on some random variables). Just restart it if you encounter
this issue. The script behind make run automatically handles errors by re-starting a run if an error
occurs.

Solvability

Known issues:

	INT.CTRL0: goes into CLB’s SR. This cannot be routed through

Jenkins build 3 (78fa4bd5, success) for example solved the following types:

	INT_L.EE4BEG0.LH12

	INT_L.FAN_ALT1.GFAN1

	INT_L.FAN_ALT4.BYP_BOUNCE_N3_3

	INT_L.LH0.EE4END3

	INT_L.LH0.LV_L9

	INT_L.LH0.SS6END3

	INT_L.LVB_L12.WW4END3

	INT_L.SW6BEG0.LV_L0

 Generic fuzzer for INT PIPs

Generic fuzzer for INT PIPs

Run this fuzzer a few times until it stops adding new PIPs to the
database.

Sample runs:

	78fa4bd5

	jenkins 3, success

	intpips: 1 iter, N=200, -m 5 -M 15

	intpips todo final: N/A

	intpips segbits_int_l.db lines: 3374

	rempips todo initial: 279

	rempips todo final (32): 9

	20e09ca7

	jenkins 21, rempips failure

	intpips: 6 iters, N=48, -m 15 -M 45

	intpips segbits_int_l.db lines: 3364

	rempips todo initial: 294

	rempips todo final (51): 294

	1182359f

	jenkins 23, intpips failure

	inpips: 12 iters, N=48, -m 15 -M 45

	intpips todo final: 495

	inpips segbits_int_l.db lines: 5167

	rempips todo: N/A

const0

These show up in large numbers after a full solve.
This means that it either has trouble solving these or simply cannot.
Counts from sample run

Includes:

	INT.BYP_ALT*.LOGIC_OUTS* (24)

	Ex: INT.BYP_ALT2.LOGIC_OUTS14

	INT.[NESW]*.LOGIC_OUTS* (576)

	Ex: INT.EE4BEG2.LOGIC_OUTS2

	Ex: INT.EL1BEG_N3.LOGIC_OUTS0

	Ex: INT.WR1BEG3.LOGIC_OUTS2

	INT.IMUX*.* (1151)

	Ex: INT.IMUX0.NL1END0

	Ex: INT.IMUX0.FAN_BOUNCE7

	Ex: INT.IMUX14.LOGIC_OUTS7

GFAN

Includes:

	Easily solves: INT.IMUX_L*.GFAN*

	Can solve: INT.BYP_ALT*.GFAN*

	Cannot solve: INT.IMUX*.GFAN* (solves as “<m1 0> ”)

 piplist Fuzzer

piplist Fuzzer

Missing README.md!

 ppips Fuzzer

ppips Fuzzer

Missing README.md!

 XADC Fuzzer

XADC Fuzzer

As of this writing, this fuzzer is not in the ROI
To use it, you must run tilegrid first with these options (artix7):

export XRAY_ROI_GRID_Y2=103
export XRAY_ROI=”SLICE_X0Y100:SLICE_X35Y149 RAMB18_X0Y40:RAMB18_X0Y59 RAMB36_X0Y20:RAMB36_X0Y29 DSP48_X0Y40:DSP48_X0Y59 IOB_X0Y100:IOB_X0Y149 XADC_X0Y0:XADC_X0Y0”
005-tilegrid$ make monitor/build/segbits_tilegrid.tdb
005-tilegrid$ make

Then run this fuzzer

 Tilegrid Fuzzer

Tilegrid Fuzzer

This fuzzer creates the tilegrid.json bitstream database.
This database contains segment definitions including base frame address and frame offsets.

Example workflow for CLB

generate.tcl LOCs one LUT per segment column towards generating frame base addresses.

A reference bitstream is generated and then:

	a series of bitstreams are generated each with one LUT bit toggled; then

	these are compared to find a toggled bit in the CLB segment column; then

	the resulting address is truncated to get the base frame address.

Finally, generate.py calculates the segment word offsets based on known segment column structure

Environment variables

XRAY_ROI

This environment variable must be set with a valid ROI.
See database for example values

XRAY_ROI_FRAMES

This can be set to a specific value to speed up processing and reduce disk space
If you don’t know where your ROI is, just set to to include all values (0x00000000:0xfffffff)

XRAY_ROI_GRID_*

Optionally, use these as a small performance optimization:

	XRAY_ROI_GRID_X1

	XRAY_ROI_GRID_X2

	XRAY_ROI_GRID_Y1

	XRAY_ROI_GRID_Y2

These should, if unused, be set to -1, with this caveat:

WARNING: CLB test generates this based on CLBs but implicitly includes INT

Therefore, if you don’t set an explicit XRAY_ROI_GRID_* it may fail
if you don’t have a CLB*_L at left and a CLB*_R at right.

 ordered_wires Fuzzer

ordered_wires Fuzzer

Missing README.md!

 get_counts Fuzzer

get_counts Fuzzer

Missing README.md!

 dump_all Fuzzer

dump_all Fuzzer

Missing README.md!

 Timing analysis fuzzer (timfuz)

Timing analysis fuzzer (timfuz)

WIP: 2018-09-10: this process is just starting together and is going to get significant cleanup. But heres the general idea

This runs various designs through Vivado and processes the
resulting timing informationin order to create very simple timing models.
While Vivado might have more involved models (say RC delays, fanout, etc),
timfuz creates simple models that bound realistic min and max element delays.

Currently this document focuses exclusively on fabric timing delays.

Quick start

make -j$(nproc)

This will take a relatively long time (say 45 min) and generate build/timgrid-v.json.
You can do a quicker test run (say 3 min) using:

make PRJ=oneblinkw PRJN=1 -j$(nproc)

Vivado background

Examples are for a XC750T on Vivado 2017.2.

TODO maybe move to: https://github.com/SymbiFlow/prjxray/wiki/Timing

Speed index

Vivado seems to associate each delay model with a “speed index”.
The fabric has these in two elements: wires (ie one delay element per tile) and pips.
For example, LUT output node A (ex: CLBLL_L_X12Y100/CLBLL_LL_A) has a single wire, also called CLBLL_L_X12Y100/CLBLL_LL_A.
This has speed index 733. Speed models can be queried and we find this corresponds to model C_CLBLL_LL_A.

There are various speed model types:

	bel_delay

	buffer

	buffer_switch

	content_version

	functional

	inpin

	outpin

	parameters

	pass_transistor

	switch

	table_lookup

	tl_buffer

	vt_limits

	wire

IIRC the interconnect is only composed of switch and wire types.

Indices with value 65535 (0xFFFF) never appear. Presumably these are unused models.
They are used for some special models such as those of type “content_version”.
For example, the “xilinx” model is of type “content_version”.

There are also “cost codes”, but these seem to be very course (only around 30 of these)
and are suspected to be related more to PnR than timing model.

Timing paths

The Vivado timing analyzer can easily output the following:

	Full: delay from BEL pin to BEL pin

	Interconnect only (ICO): delay from BEL pin to BEL pin, but only report interconnect delays (ie exclude site delays)

There is also theoretically an option to report delays up to a specific pip,
but this option is poorly documented and I was unable to get it to work.

Each timing path reports a fast process and a slow process min and max value. So four process values are reported in total:

	fast_max

	fast_min

	slow_max

	slow_min

For example, if the device is end of life, was poorly made, and at an extreme temperature, the delay may be up to the slow_max value.
Since ICO can be reported for each of these, fully analyzing a timing path results in 8 values.

Finally, part of this was analyzing tile regularity to discover what a reasonably compact timing model was.
We verified that all tiles of the same type have exactly the same delay elements.

Methodology

Make sure you’ve read the Vivado background section first

Background

This section briefly describes some of the mathmatics used by this technique that readers may not be familiar with.
These definitions are intended to be good enough to provide a high level understanding and may not be precise.

Numerical analysis: the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations)

numpy: a popular numerical analysis python library. Often written np (import numpy as np).

scipy: provides higher level functionality on top of numpy

sympy (“symbolic python”): like numpy, but is designed to work with rational numbers.
For example, python actually stores 0.1 as 0.1000000000000000055511151231257827021181583404541015625.
However, sympy can represent this as the fraction 1/10, eliminating numerical approximation issues.

Least squares (ex: scipy.optimize.least_squares): approximation method to do a best fit of several variables to a set of equations.
For example, given the equations “x = 1” and “x = 2” there isn’t an exact solution.
However, “x = 1.5” is a good compromise since its reasonably solves both equations.

Linear programming (ex: scipy.optimize.linprog aka linprog): approximation method that finds a set of variables that satisfy a set of inequalities.
For example,

Reduced row echelon form (RREF, ex: sympy.Matrix.rref): the simplest form that a system of linear equations can be solved to.
For example, given “x = 1” and “x + y = 9”, one can solve for “x = 1” and “y = 8”.
However, given “x + y = 1” and “x + y + z = 9”, there aren’t enough variables to solve this fully.
In this case RREF provides a best effort by giving the ratios between correlated variables.
One variable is normalized to 1 in each of these ratios and is called the “pivot”.
Note that if numpy.linalg.solve encounters an unsolvable matrix it may either complain
or generate a false solution due to numerical approximation issues.

What didn’t work

First some quick background on things that didn’t work to illustrate why the current approach was chosen.
I first tried to directly through things into linprog, but it unfairly weighted towards arbitrary shared variables. For example, feeding in:

	t0 >= 10

	t0 + t1 >= 100

It would declare “t0 = 100”, “t1 = 0” instead of the more intuitive “t0 = 10”, “t1 = 90”.
I tried to work around this in several ways, notably subtracting equations from each other to produce additional constraints.
This worked okay, but was relatively slow and wasn’t approaching nearly solved solutions, even when throwing a lot of data at it.

Next we tried randomly combining a bunch of the equations together and solving them like a regular linear algebra matrix (numpy.linalg.solve).
However, this illustrated that the system was under-constrained.
Further analysis revealed that there are some delay element combinations that simply can’t be linearly separated.
This was checked primarily using numpy.linalg.matrix_rank, with some use of numpy.linalg.slogdet.
matrix_rank was preferred over slogdet since its more flexible against non-square matrices.

Process

Above ultimately led to the idea that we should come up with a set of substitutions that would make the system solvable. This has several advantages:

	Easy to evaluate which variables aren’t covered well enough by source data

	Easy to evaluate which variables weren’t solved properly (if its fully constrained it should have had a non-zero delay)

At a high level, the above learnings gave this process:

	Find correlated variables by using RREF (sympy.Matrix.rref) to create variable groups

	Note pivots

	You must input a fractional type (ex: fractions.Fraction, but surprisingly not int) to get exact results, otherwise it seems to fall back to numerical approximation

	This is by far the most computationally expensive step

	Mixing RREF substitutions from one data set to another may not be recommended

	Use RREF result to substitute groups on input data, creating new meta variables, but ultimately reducing the number of columns

	Pick a corner

	Examples assume fast_max, but other corners are applicable with appropriate column and sign changes

	De-duplicate by removing equations that are less constrained

	Ex: if solving for a max corner and given:

	t0 + t1 >= 10

	t0 + t1 >= 12

	The first equation is redundant since the second provides a stricter constraint

	This significantly reduces computational time

	Use least squares (scipy.optimize.least_squares) to fit variables near input constraints

	Helps fairly weight delays vs the original input constraints

	Does not guarantee all constraints are met. For example, if this was put in (ignoring these would have been de-duplicated):

	t0 = 10

	t0 = 12

	It may decide something like t0 = 11, which means that the second constraint was not satisfied given we actually want t0 >= 12

	Use linear programming (scipy.optimize.linprog aka linprog) to formally meet all remaining constraints

	Start by filtering out all constraints that are already met. This should eliminate nearly all equations

	Map resulting constraints onto different tile types

	Group delays map onto the group pivot variable, typically setting other elements to 0 (if the processed set is not the one used to create the pivots they may be non-zero)

TODO, suggestions

Includes

	Consider removing rref

	Intended to understand what can’t be solved, maybe not useful in production

	Need more coverage

	Consider instrumenting all fuzzers to output data to feed into timing anlayzer

	Justification: we need a lot of weird cases, we have code that does that in the other fuzzers

	Tune performance parameters

	Can we improve quality of results?

	Do we have a good enough quality checker? (solve_qor.py)

	Compare our vs Xilinx output on random designs

	Does the solve take too long? What could speed it up?

	Investigate min corner

	Tends to solve towards 0, making this not useful

	Low priority: most designs just close timing with setup time

	Investigate characterizing full RC timing model

	Can we split pivot delays among elements instead of entirely into pivot?

	Consider breaking out timing analyzer into its own project / library so it can be re-used on other projects

	Review “–massage”. Does this help?

	Review computed site delays vs published Xilinx numbers (DC and AC Switching Characteristics)

	Fabric delay models are RC, but are the site delay models RC as well or maybe just linear?

	Can we create antenna nets to get simpler solves?

	Can we get tcl timing analyzer to analyze a partial route?

	Option says you should be able to do this

	I could not actually get it to work

Improve test cases

Test cases are somewhat random right now. We could make much more targetted cases using custom routing to improve various fanout estimates and such.
Also there are a lot more elements that are not covered.
At a minimum these should be moved to their own directory.

ZERO models

Background: there are a number of speed models with the name ZERO in them.
These generally seem to be zero delay, although needs more investigation.

Example: see pseudo pip item below

The timing models will probably significantly improve if these are removed.
In the past I was removing them, but decided to keep them in for now in the spirit of being more conservative.

They include:

	_BSW_CLK_ZERO

	BSW_CLK_ZERO

	_BSW_ZERO

	BSW_ZERO

	_B_ZERO

	B_ZERO

	C_CLK_ZERO

	C_DSP_ZERO

	C_ZERO

	I_ZERO

	_O_ZERO

	O_ZERO

	RC_ZERO

	_R_ZERO

	R_ZERO

Virtual switchboxes

Background: several low level configuration details are abstracted with virtual configurable elements.
For example, LUT inputs can be rearranged to reduce routing congestion.
However, the LUT configuratioon must be changed to match the switched inputs.
This is handled by the CLBLL_L_INTER switchbox, which doesn’t encode any physical configuration bits.
However, this contains PIPs with delay models.

For example, LUT A, input A1 has node CLBLM_M_A1 coming from pip junction CLBLM_M_A1 has PIP CLBLM_IMUX7->CLBLM_M_A1
with speed index 659 (R_ZERO).

This might be further evidence on related issue that ZERO models should probably be removed.

Incporporate fanout

We could probably significantly improve model granularity by studying delay impact on fanout

Investigate RC delays

Suspect accuracy could be significantly improved by moving to SPICE based models. But this will take significantly more characterization

Characterize real hardware

A few people have expressed interest on running tests on real hardware. Will take some thought given we don’t have direct access

Review approximation errors

Ex: one known issue is that the objective function linearly weights small and large delays.
This is only recommended when variables are approximately the same order of magnitude.
For example, carry chain delays are on the order of 7 ps while other delays are 100 ps.
Its very easy to put a large delay on the carry chain while it could have been more appropriately put somewhere else.

 bram-cascades Fuzzer

bram-cascades Fuzzer

Missing README.md!

 BRAM Configuration

BRAM Configuration

Solves for BRAM configuration bits (18K vs 36K, etc)

 BRAM Data

BRAM Data

Solves for BRAM data bits

See workflow comments: https://github.com/SymbiFlow/prjxray/pull/180

 bram-fifo-config Fuzzer

bram-fifo-config Fuzzer

Missing README.md!

 bram36-config Fuzzer

bram36-config Fuzzer

Missing README.md!

 clb-ffconfig Fuzzer

clb-ffconfig Fuzzer

Documents FF configuration.

Note Vivado GUI is misleading in some cases where it shows configuration per FF, but its actually per SLICE

Primitive pin map

	Element
	CE
	CK
	D
	SR
	Q

	FDRE
	CE
	C
	D
	R
	Q

	FDPE
	CE
	C
	D
	PRE
	Q

	FDSE
	CE
	C
	D
	S
	Q

	FDCE
	CE
	C
	D
	CLR
	Q

	LDPE
	GE
	G
	D
	PRE
	Q

	LDCE
	GE
	G
	D
	CLR
	Q

Primitive bit map

	Prim
	FFSYNC
	LATCH
	ZRST

	FDPE
	
	
	

	FDSE
	X
	
	

	FDRE
	X
	
	X

	FDCE
	
	
	X

	LDCE
	
	X
	X

	LDPE
	
	X
	

FFSYNC

Configures whether a storage element is synchronous or asynchronous.

Scope: entire site (not individual FFs)

	FFSYNC
	Reset
	Applicable prims

	0
	Synchronous
	FDPE, FDCE, LDCE, LDPE

	1
	Asynchronous
	FDSE, FDRE

LATCH

Configures latch vs FF behavior for the CLB

	LATCH
	Description
	Primitives

	0
	All storage elements in the CLB are FF's
	FDPE, FDSE, FDRE, FDCE

	1
	LUT6 storage elements are latches (LDCE or LDPE). LUT5 storage elements cannot be used
	LDCE, LDPE

N*FF.ZRST

Configures stored value when reset is asserted

	Prim
	ZRST
	On reset

	FDRE, FDCE, and LDCE
	0
	1

	FDRE, FDCE, and LDCE
	1
	0

	FDPE, FDSE, and LDPE
	0
	0

	FDPE, FDSE, and LDPE
	1
	1

N*FF.ZINI

Sets GSR FF or latch value

	LATCH
	ZINI
	Set to

	FF
	0
	1

	FF
	1
	0

	LATCH
	0
	0

	LATCH
	1
	1

CEUSEDMUX

Configures ability to drive clock enable (CE) or always enable clock

	CEUSEDMUX
	Description

	0
	always on (CE=1)

	1
	controlled (CE=mywire)

SRUSEDMUX

Configures ability to reset FF after GSR

	SRUSEDMUX
	Description

	0
	never reset (R=0)

	1
	controlled (R=mywire)

TODO: how used when SR?

CLKINV

Configures whether to invert the clock going into a slice.

Scope: entire site (not individual FFs)

	LATCH
	CLKINV
	Description

	FF
	0
	normal clock

	FF
	1
	invert clock

	LATCH
	0
	invert clock

	LATCH
	1
	normal clock

 clb-ffsrcemux Fuzzer

clb-ffsrcemux Fuzzer

CEUSEDMUX

Configures whether clock enable (CE) is used or clock always on

	CEUSEDMUX
	CE

	0
	Always on

	1
	Controlled

SRUSEDMUX

Configures whether FF can be reset or simply uses D value

	SRUSEDMUX
	Resettable?

	0
	No

	1
	Controlled

XXX: How used when SR?

 clb-lutinit Fuzzer

clb-lutinit Fuzzer

NLUT.INIT

Sites: CLBL[LM]_[LR].SLICE[LM]_X[01] (all CLB)

Sets the LUT6 INIT property

 clb-n5ffmux Fuzzer

clb-n5ffmux Fuzzer

N5FFMUX

The A5FFMUX family of CLB muxes feed the D input of A5FF family of FFs

	N5FFMUX
	N5FFMUX.D

	IN_A
	N5LUT.O5

	IN_B
	NX

 clb-ncy0 Fuzzer

clb-ncy0 Fuzzer

CARRY4.NCY0

The ACY0 family of CLB muxes feeds the CARRY4.DI0 family

	NCY0
	CARRY4.DIN

	0
	NX

	1
	O5

 clb-ndi1mux Fuzzer

clb-ndi1mux Fuzzer

NDI1MUX

Configures the NDI1MUX mux which provides the DI1 input on CLB RAM.

Available selections varies by A/B/C/D, see db for details.

 clb-nffmux Fuzzer

clb-nffmux Fuzzer

NFFMUX

Configures the AFFMUX family of CLB muxes which feed the D input of the AFF series of FFs.

Available selections varies by A/B/C/D, see db for details.

 clb-noutmux Fuzzer

clb-noutmux Fuzzer

[A-D]FFMUX

Configures the AOUTMUX family of CLB muxes which feed the AMUX family of CLB outputs

Available selections varies by A/B/C/D, see db for details.

 clb-precyinit Fuzzer

clb-precyinit Fuzzer

PRECYINIT

Configures the PRECYINIT mux which provides CARRY4’s first carry chain input

	PRECYINIT
	Value

	C0
	Logic 0

	C1
	Logic 1

	AX
	AX CLB input

	CIN
	Carry in from adjacent CLB COUT

 clb-ram Fuzzer

clb-ram Fuzzer

	Primitive
	RAM
	SMALL
	SRL

	LUT6
	
	
	

	SRL16E
	
	X
	X

	SRLC32E
	
	
	X

	RAM32X1S
	X
	X
	

	RAM64X1S
	X
	
	

	RAM32M
	X
	X
	

	RAM32X1D
	X
	X
	

	RAM64M
	X
	
	

	RAM64X1D
	X
	
	

	RAM128X1D
	X
	
	

	RAM256X1S
	X
	
	

	RAM128X1S
	X
	
	

NLUT.RAM

Set to make a RAM* family primitive, otherwise is a SRL or LUT function generator.

NLUT.SMALL

Seems to be set on smaller primitives.

NLUT.SRL

Whether to make a shift register LUT (SRL). Set when using SRL16E or SRLC32E

WA7USED

Set to 1 to propagate CLB’s CX input to WA7

WA8USED

Set to 1 to propagate CLB’s BX input to WA8

WEMUX.CE

	WEMUX.CE
	CLB RAM write enable

	0
	CLB WE input

	1
	CLB CE input

 clk-bufg-config Fuzzer

clk-bufg-config Fuzzer

Missing README.md!

 BUFG interconnect fuzzer

BUFG interconnect fuzzer

Solves pips located within the BUFG switch box.

 clk-hrow-config Fuzzer

clk-hrow-config Fuzzer

Missing README.md!

 clk-hrow-pips Fuzzer

clk-hrow-pips Fuzzer

Missing README.md!

 clk-rebuf-pips Fuzzer

clk-rebuf-pips Fuzzer

Missing README.md!

 MMCM

MMCM

MMCME2_ADV in UG953 [https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug953-vivado-7series-libraries.pdf] lists the available attributes.

 Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

FIXME: Add description.

 dsp-mskpat Fuzzer

dsp-mskpat Fuzzer

Missing README.md!

 dump_all Fuzzer

dump_all Fuzzer

Missing README.md!

 fifo-config Fuzzer

fifo-config Fuzzer

Missing README.md!

 get_counts Fuzzer

get_counts Fuzzer

Missing README.md!

 HCLK_CMT interconnect fuzzer

HCLK_CMT interconnect fuzzer

Solves pips located within the HCLK_CMT switch box.

 init-db Fuzzer

init-db Fuzzer

Missing README.md!

 int-imux-gfan Fuzzer

int-imux-gfan Fuzzer

Missing README.md!

 int-piplist Fuzzer

int-piplist Fuzzer

Missing README.md!

 IOB Fuzzer

IOB Fuzzer

 iob-ilogic Fuzzer

iob-ilogic Fuzzer

Missing README.md!

 iob-ologic Fuzzer

iob-ologic Fuzzer

Missing README.md!

 XADC Fuzzer

XADC Fuzzer

As of this writing, this fuzzer is not in the ROI
To use it, you must run tilegrid first with these options (artix7):

export XRAY_ROI_GRID_Y2=103
export XRAY_ROI=”SLICE_X0Y100:SLICE_X35Y149 RAMB18_X0Y40:RAMB18_X0Y59 RAMB36_X0Y20:RAMB36_X0Y29 DSP48_X0Y40:DSP48_X0Y59 IOB_X0Y100:IOB_X0Y149 XADC_X0Y0:XADC_X0Y0”
005-tilegrid$ make monitor/build/segbits_tilegrid.tdb
005-tilegrid$ make

Then run this fuzzer

 ordered_wires Fuzzer

ordered_wires Fuzzer

Missing README.md!

 part-yaml Fuzzer

part-yaml Fuzzer

Missing README.md!

 pins Fuzzer

pins Fuzzer

Missing README.md!

 Fuzzer for bidirectional INT PIPs

Fuzzer for bidirectional INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for INT PIPs driving the CLK wires

Fuzzer for INT PIPs driving the CLK wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for INT PIPs driving the CTRL wires

Fuzzer for INT PIPs driving the CTRL wires

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for the ALT_FAN.*GFAN PIPs

Fuzzer for the ALT_FAN.*GFAN PIPs

This fuzzer solves the ALT_FAN.GFAN PIPs which had collisions with the GFAN PIPs.

 Fuzzer for INT PIPs driving the GFAN wires with GND

Fuzzer for INT PIPs driving the GFAN wires with GND

Run this fuzzer once.

 Fuzzer for PIPs in HCLK titles

Fuzzer for PIPs in HCLK titles

Run this fuzzer once.

It cannot solve HCLK.HCLK_CK_INOUT_* family

 Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

 Fuzzer for the remaining INT PIPs

Fuzzer for the remaining INT PIPs

Run this fuzzer a few times until it produces an empty todo.txt file (make run will run this loop).

This fuzzer occationally fails (depending on some random variables). Just restart it if you encounter
this issue. The script behind make run automatically handles errors by re-starting a run if an error
occurs.

Solvability

Known issues:

	INT.CTRL0: goes into CLB’s SR. This cannot be routed through

Jenkins build 3 (78fa4bd5, success) for example solved the following types:

	INT_L.EE4BEG0.LH12

	INT_L.FAN_ALT1.GFAN1

	INT_L.FAN_ALT4.BYP_BOUNCE_N3_3

	INT_L.LH0.EE4END3

	INT_L.LH0.LV_L9

	INT_L.LH0.SS6END3

	INT_L.LVB_L12.WW4END3

	INT_L.SW6BEG0.LV_L0

 Generic fuzzer for INT PIPs

Generic fuzzer for INT PIPs

Run this fuzzer a few times until it stops adding new PIPs to the
database.

Sample runs:

	78fa4bd5

	jenkins 3, success

	intpips: 1 iter, N=200, -m 5 -M 15

	intpips todo final: N/A

	intpips segbits_int_l.db lines: 3374

	rempips todo initial: 279

	rempips todo final (32): 9

	20e09ca7

	jenkins 21, rempips failure

	intpips: 6 iters, N=48, -m 15 -M 45

	intpips segbits_int_l.db lines: 3364

	rempips todo initial: 294

	rempips todo final (51): 294

	1182359f

	jenkins 23, intpips failure

	inpips: 12 iters, N=48, -m 15 -M 45

	intpips todo final: 495

	inpips segbits_int_l.db lines: 5167

	rempips todo: N/A

const0

These show up in large numbers after a full solve.
This means that it either has trouble solving these or simply cannot.
Counts from sample run

Includes:

	INT.BYP_ALT*.LOGIC_OUTS* (24)

	Ex: INT.BYP_ALT2.LOGIC_OUTS14

	INT.[NESW]*.LOGIC_OUTS* (576)

	Ex: INT.EE4BEG2.LOGIC_OUTS2

	Ex: INT.EL1BEG_N3.LOGIC_OUTS0

	Ex: INT.WR1BEG3.LOGIC_OUTS2

	INT.IMUX*.* (1151)

	Ex: INT.IMUX0.NL1END0

	Ex: INT.IMUX0.FAN_BOUNCE7

	Ex: INT.IMUX14.LOGIC_OUTS7

GFAN

Includes:

	Easily solves: INT.IMUX_L*.GFAN*

	Can solve: INT.BYP_ALT*.GFAN*

	Cannot solve: INT.IMUX*.GFAN* (solves as “<m1 0> ”)

 piplist Fuzzer

piplist Fuzzer

Missing README.md!

 ppips Fuzzer

ppips Fuzzer

Missing README.md!

 Tilegrid Fuzzer

Tilegrid Fuzzer

This fuzzer creates the tilegrid.json bitstream database.
This database contains segment definitions including base frame address and frame offsets.

Example workflow for CLB

generate.tcl LOCs one LUT per segment column towards generating frame base addresses.

A reference bitstream is generated and then:

	a series of bitstreams are generated each with one LUT bit toggled; then

	these are compared to find a toggled bit in the CLB segment column; then

	the resulting address is truncated to get the base frame address.

Finally, generate.py calculates the segment word offsets based on known segment column structure

Environment variables

XRAY_ROI

This environment variable must be set with a valid ROI.
See database for example values

XRAY_ROI_FRAMES

This can be set to a specific value to speed up processing and reduce disk space
If you don’t know where your ROI is, just set to to include all values (0x00000000:0xfffffff)

XRAY_ROI_GRID_*

Optionally, use these as a small performance optimization:

	XRAY_ROI_GRID_X1

	XRAY_ROI_GRID_X2

	XRAY_ROI_GRID_Y1

	XRAY_ROI_GRID_Y2

These should, if unused, be set to -1, with this caveat:

WARNING: CLB test generates this based on CLBs but implicitly includes INT

Therefore, if you don’t set an explicit XRAY_ROI_GRID_* it may fail
if you don’t have a CLB*_L at left and a CLB*_R at right.

 Timing analysis fuzzer (timfuz)

Timing analysis fuzzer (timfuz)

WIP: 2018-09-10: this process is just starting together and is going to get significant cleanup. But heres the general idea

This runs various designs through Vivado and processes the
resulting timing informationin order to create very simple timing models.
While Vivado might have more involved models (say RC delays, fanout, etc),
timfuz creates simple models that bound realistic min and max element delays.

Currently this document focuses exclusively on fabric timing delays.

Quick start

make -j$(nproc)

This will take a relatively long time (say 45 min) and generate build/timgrid-v.json.
You can do a quicker test run (say 3 min) using:

make PRJ=oneblinkw PRJN=1 -j$(nproc)

Vivado background

Examples are for a XC750T on Vivado 2017.2.

TODO maybe move to: https://github.com/SymbiFlow/prjxray/wiki/Timing

Speed index

Vivado seems to associate each delay model with a “speed index”.
The fabric has these in two elements: wires (ie one delay element per tile) and pips.
For example, LUT output node A (ex: CLBLL_L_X12Y100/CLBLL_LL_A) has a single wire, also called CLBLL_L_X12Y100/CLBLL_LL_A.
This has speed index 733. Speed models can be queried and we find this corresponds to model C_CLBLL_LL_A.

There are various speed model types:

	bel_delay

	buffer

	buffer_switch

	content_version

	functional

	inpin

	outpin

	parameters

	pass_transistor

	switch

	table_lookup

	tl_buffer

	vt_limits

	wire

IIRC the interconnect is only composed of switch and wire types.

Indices with value 65535 (0xFFFF) never appear. Presumably these are unused models.
They are used for some special models such as those of type “content_version”.
For example, the “xilinx” model is of type “content_version”.

There are also “cost codes”, but these seem to be very course (only around 30 of these)
and are suspected to be related more to PnR than timing model.

Timing paths

The Vivado timing analyzer can easily output the following:

	Full: delay from BEL pin to BEL pin

	Interconnect only (ICO): delay from BEL pin to BEL pin, but only report interconnect delays (ie exclude site delays)

There is also theoretically an option to report delays up to a specific pip,
but this option is poorly documented and I was unable to get it to work.

Each timing path reports a fast process and a slow process min and max value. So four process values are reported in total:

	fast_max

	fast_min

	slow_max

	slow_min

For example, if the device is end of life, was poorly made, and at an extreme temperature, the delay may be up to the slow_max value.
Since ICO can be reported for each of these, fully analyzing a timing path results in 8 values.

Finally, part of this was analyzing tile regularity to discover what a reasonably compact timing model was.
We verified that all tiles of the same type have exactly the same delay elements.

Methodology

Make sure you’ve read the Vivado background section first

Background

This section briefly describes some of the mathmatics used by this technique that readers may not be familiar with.
These definitions are intended to be good enough to provide a high level understanding and may not be precise.

Numerical analysis: the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations)

numpy: a popular numerical analysis python library. Often written np (import numpy as np).

scipy: provides higher level functionality on top of numpy

sympy (“symbolic python”): like numpy, but is designed to work with rational numbers.
For example, python actually stores 0.1 as 0.1000000000000000055511151231257827021181583404541015625.
However, sympy can represent this as the fraction 1/10, eliminating numerical approximation issues.

Least squares (ex: scipy.optimize.least_squares): approximation method to do a best fit of several variables to a set of equations.
For example, given the equations “x = 1” and “x = 2” there isn’t an exact solution.
However, “x = 1.5” is a good compromise since its reasonably solves both equations.

Linear programming (ex: scipy.optimize.linprog aka linprog): approximation method that finds a set of variables that satisfy a set of inequalities.
For example,

Reduced row echelon form (RREF, ex: sympy.Matrix.rref): the simplest form that a system of linear equations can be solved to.
For example, given “x = 1” and “x + y = 9”, one can solve for “x = 1” and “y = 8”.
However, given “x + y = 1” and “x + y + z = 9”, there aren’t enough variables to solve this fully.
In this case RREF provides a best effort by giving the ratios between correlated variables.
One variable is normalized to 1 in each of these ratios and is called the “pivot”.
Note that if numpy.linalg.solve encounters an unsolvable matrix it may either complain
or generate a false solution due to numerical approximation issues.

What didn’t work

First some quick background on things that didn’t work to illustrate why the current approach was chosen.
I first tried to directly through things into linprog, but it unfairly weighted towards arbitrary shared variables. For example, feeding in:

	t0 >= 10

	t0 + t1 >= 100

It would declare “t0 = 100”, “t1 = 0” instead of the more intuitive “t0 = 10”, “t1 = 90”.
I tried to work around this in several ways, notably subtracting equations from each other to produce additional constraints.
This worked okay, but was relatively slow and wasn’t approaching nearly solved solutions, even when throwing a lot of data at it.

Next we tried randomly combining a bunch of the equations together and solving them like a regular linear algebra matrix (numpy.linalg.solve).
However, this illustrated that the system was under-constrained.
Further analysis revealed that there are some delay element combinations that simply can’t be linearly separated.
This was checked primarily using numpy.linalg.matrix_rank, with some use of numpy.linalg.slogdet.
matrix_rank was preferred over slogdet since its more flexible against non-square matrices.

Process

Above ultimately led to the idea that we should come up with a set of substitutions that would make the system solvable. This has several advantages:

	Easy to evaluate which variables aren’t covered well enough by source data

	Easy to evaluate which variables weren’t solved properly (if its fully constrained it should have had a non-zero delay)

At a high level, the above learnings gave this process:

	Find correlated variables by using RREF (sympy.Matrix.rref) to create variable groups

	Note pivots

	You must input a fractional type (ex: fractions.Fraction, but surprisingly not int) to get exact results, otherwise it seems to fall back to numerical approximation

	This is by far the most computationally expensive step

	Mixing RREF substitutions from one data set to another may not be recommended

	Use RREF result to substitute groups on input data, creating new meta variables, but ultimately reducing the number of columns

	Pick a corner

	Examples assume fast_max, but other corners are applicable with appropriate column and sign changes

	De-duplicate by removing equations that are less constrained

	Ex: if solving for a max corner and given:

	t0 + t1 >= 10

	t0 + t1 >= 12

	The first equation is redundant since the second provides a stricter constraint

	This significantly reduces computational time

	Use least squares (scipy.optimize.least_squares) to fit variables near input constraints

	Helps fairly weight delays vs the original input constraints

	Does not guarantee all constraints are met. For example, if this was put in (ignoring these would have been de-duplicated):

	t0 = 10

	t0 = 12

	It may decide something like t0 = 11, which means that the second constraint was not satisfied given we actually want t0 >= 12

	Use linear programming (scipy.optimize.linprog aka linprog) to formally meet all remaining constraints

	Start by filtering out all constraints that are already met. This should eliminate nearly all equations

	Map resulting constraints onto different tile types

	Group delays map onto the group pivot variable, typically setting other elements to 0 (if the processed set is not the one used to create the pivots they may be non-zero)

TODO, suggestions

Includes

	Consider removing rref

	Intended to understand what can’t be solved, maybe not useful in production

	Need more coverage

	Consider instrumenting all fuzzers to output data to feed into timing anlayzer

	Justification: we need a lot of weird cases, we have code that does that in the other fuzzers

	Tune performance parameters

	Can we improve quality of results?

	Do we have a good enough quality checker? (solve_qor.py)

	Compare our vs Xilinx output on random designs

	Does the solve take too long? What could speed it up?

	Investigate min corner

	Tends to solve towards 0, making this not useful

	Low priority: most designs just close timing with setup time

	Investigate characterizing full RC timing model

	Can we split pivot delays among elements instead of entirely into pivot?

	Consider breaking out timing analyzer into its own project / library so it can be re-used on other projects

	Review “–massage”. Does this help?

	Review computed site delays vs published Xilinx numbers (DC and AC Switching Characteristics)

	Fabric delay models are RC, but are the site delay models RC as well or maybe just linear?

	Can we create antenna nets to get simpler solves?

	Can we get tcl timing analyzer to analyze a partial route?

	Option says you should be able to do this

	I could not actually get it to work

Improve test cases

Test cases are somewhat random right now. We could make much more targetted cases using custom routing to improve various fanout estimates and such.
Also there are a lot more elements that are not covered.
At a minimum these should be moved to their own directory.

ZERO models

Background: there are a number of speed models with the name ZERO in them.
These generally seem to be zero delay, although needs more investigation.

Example: see pseudo pip item below

The timing models will probably significantly improve if these are removed.
In the past I was removing them, but decided to keep them in for now in the spirit of being more conservative.

They include:

	_BSW_CLK_ZERO

	BSW_CLK_ZERO

	_BSW_ZERO

	BSW_ZERO

	_B_ZERO

	B_ZERO

	C_CLK_ZERO

	C_DSP_ZERO

	C_ZERO

	I_ZERO

	_O_ZERO

	O_ZERO

	RC_ZERO

	_R_ZERO

	R_ZERO

Virtual switchboxes

Background: several low level configuration details are abstracted with virtual configurable elements.
For example, LUT inputs can be rearranged to reduce routing congestion.
However, the LUT configuratioon must be changed to match the switched inputs.
This is handled by the CLBLL_L_INTER switchbox, which doesn’t encode any physical configuration bits.
However, this contains PIPs with delay models.

For example, LUT A, input A1 has node CLBLM_M_A1 coming from pip junction CLBLM_M_A1 has PIP CLBLM_IMUX7->CLBLM_M_A1
with speed index 659 (R_ZERO).

This might be further evidence on related issue that ZERO models should probably be removed.

Incporporate fanout

We could probably significantly improve model granularity by studying delay impact on fanout

Investigate RC delays

Suspect accuracy could be significantly improved by moving to SPICE based models. But this will take significantly more characterization

Characterize real hardware

A few people have expressed interest on running tests on real hardware. Will take some thought given we don’t have direct access

Review approximation errors

Ex: one known issue is that the objective function linearly weights small and large delays.
This is only recommended when variables are approximately the same order of magnitude.
For example, carry chain delays are on the order of 7 ps while other delays are 100 ps.
Its very easy to put a large delay on the carry chain while it could have been more appropriately put somewhere else.

 CLB_BUSED Minitest

CLB_BUSED Minitest

Purpose

Tests for BUSED bit

Result

However got this

seg SEG_CLBLL_R_X13Y101
bit 30_24

seg SEG_CLBLL_R_X13Y100
bit 30_24

which seems to indicate there is no such bit, or it was rolled into PIP stuff already

 clb-carry_cin_cyinit Minitest

clb-carry_cin_cyinit Minitest

Missing README.md!

 clb-configs Minitest

clb-configs Minitest

Missing README.md!

 CLB_MUXF8 Minitest

CLB_MUXF8 Minitest

Purpose

This tests an issue related to Vivado 2017.2 vs 2017.3 changing MUXF8 behaviorThe general issue is the LUT6_2 cannot be used with a MUXF8 (even if O5 is unused)

General notes:

	2017.2: LUT6_2 works with MUXF8

	2017.3: LUT6_2 does not work with MUXF8

	All: LUT6 works with MUXF8

	All: MUXF8 (even with MUXF7) can be instantiated unconnected

	2017.4 seems to behave like 2017.3

 clkbuf Minitest

clkbuf Minitest

Missing README.md!

 eccbits Minitest

eccbits Minitest

Missing README.md!

 FIXEDPNR Minitest

FIXEDPNR Minitest

Purpose

Result

Preliminary result

	
	00_48
	30_12
	31_03

	FDPE
	
	
	

	FDSE
	X
	
	

	FDCE
	
	X
	X

	FDRE
	X
	X
	X

 lvb_long_mux Minitest

lvb_long_mux Minitest

Missing README.md!

 nodes_wires_list Minitest

nodes_wires_list Minitest

Missing README.md!

 FASM Proof of Concept using Vivado Partial Reconfig flow

FASM Proof of Concept using Vivado Partial Reconfig flow

harness.v is a top-level design that routes a variety of signal into a black-box
region of interest (ROI). Vivado’s Partial Reconfiguration flow (see UG909
and UG947) is used to implement that design and obtain a bitstream that
configures portions of the chip that are currently undocumented.

Designs that fit within the ROI are written in FASM and merged with the above
harness into a bitstream with fasm2frame and xc7patch. Since writting FASM is
rather tedious, rules are provided to convert Verilog ROI designs into FASM via
Vivado.

Usage

make rules are provided for generating each step of the process so that
intermediate forms can be analyzed. Assuming you have a .fasm file, invoking
the %_hand_crafted.bit rule will generate a merged bitstream:

make foo.hand_crafted.bit # reads foo.fasm

Using Vivado to generate .fasm

Vivado’s Partial Reconfiguration flow can be used to synthesize and implement a
ROI design that is then converted to .fasm. Write a Verilog module
that exactly matches the roi blackbox model in the top-level design. Note
that even the name of the module must match exactly. Assuming you have created
that design in my_roi_design.v, ‘make my_roi_design_hand_crafted.bit’
will synthesize and implement the design with Vivado, translate the resulting
partial bitstream into FASM, and then generate a full bitstream by patching the
harness bitstream with the FASM. non_inv.v is provided as an example ROI
design for this flow.

 PICORV32-v Minitest

PICORV32-v Minitest

Purpose

Unknown bits CPU synthesis test (Vivado synthesis + Vivado PnR)

Result

 PICORV32-y Minitest

PICORV32-y Minitest

Purpose

Unknown bits CPU synthesis test (Yosys synthesis + Vivado for PnR)

Result

 pip-switchboxes Minitest

pip-switchboxes Minitest

Missing README.md!

 ROI_HARNESS Minitest

ROI_HARNESS Minitest

Purpose

Creates an harness bitstream which maps peripherals into a region of interest
which can be reconfigured.

The currently supported boards are;

	Artix 7 boards;

	Basys 3 [https://github.com/SymbiFlow/prjxray-db/tree/master/artix7/harness#basys-3]

	Arty A7-35T [https://github.com/SymbiFlow/prjxray-db/tree/master/artix7/harness#arty-a7-35t]

	Zynq boards;

	Zybo Z7-10 [https://github.com/SymbiFlow/prjxray-db/tree/master/zynq7/harness#zybo-z7-10]

The following configurations are supported;

	SWBUT - Harness which maps a board’s switches, buttons and LEDs into the
region of interest (plus clock).

	PMOD - Harness which maps a board’s PMOD connectors into the region of
interest (plus a clock).

	UART - Harness which maps a board’s UART

“ARTY-A7-SWBUT”
4 switches then 4 buttons
A8 C11 C10 A10 D9 C9 B9 B8
4 LEDs then 4 RGB LEDs (green only)
H5 J5 T9 T10 F6 J4 J2 H6

 # clock
E3

“ARTY-A7-PMOD”
CLK on Pmod JA
G13 B11 A11 D12 D13 B18 A18 K16
DIN on Pmod JB
E15 E16 D15 C15 J17 J18 K15 J15
DOUT on Pmod JC
U12 V12 V10 V11 U14 V14 T13 U13

“ARTY-A7-UART”
RST button and UART_RX
C2 A9
LD7 and UART_TX
T10 D10
100 MHz CLK onboard
E3

“BASYS3-SWBUT”
Slide switch pins
V17 V16 W16 W17 W15 V15 W14 W13 V2 T3 T2 R3 W2 U1 T1 R2
LEDs pins
U16 E19 U19 V19 W18 U15 U14 V14 V13 V3 W3 U3 P3 N3 P1 L1

 # UART
 B18 # ins
 A18 # outs

 # 100 MHz CLK onboard
 W5

“ZYBOZ7-SWBUT”
J15 - UART_RX - JE3
G15 - SW0
K18 - BTN0
K19 - BTN1
J15 G15 K18 K19

 # H15 - UART_TX - JE4
 # E17 - ETH PHY reset (active low, keep high for 125 MHz clock)
 # M14 - LD0
 # G14 - LD2
 # M15 - LD1
 # D18 - LD3

 # 125 MHz CLK onboard
 K17

Quickstart

source settings/artix7.sh
cd minitests/roi_harness
source arty-swbut.sh
make clean
make copy

How it works

Basic idea:

	LOC LUTs in the ROI to terminate input and output routing

	Let Vivado LOC the rest of the logic

	Manually route signals in and out of the ROI enough to avoid routing loops into the ROI

	Let Vivado finish the rest of the routes

There is no logic outside of the ROI in order to keep IOB to ROI delays short
Its expected the end user will rip out everything inside the ROI

To target Arty A7 you should source the artix DB environment script then source arty.sh

To build the baseline harness:

./runme.sh

To build a sample Vivado design using the harness:

XRAY_ROIV=roi_inv.v XRAY_FIXED_XDC=out_xc7a35tcpg236-1_BASYS3-SWBUT_roi_basev/fixed_noclk.xdc ./runme.sh

Note: this was intended for verification only and not as an end user flow (they should use SymbiFlow)

To use the harness for the basys3 demo, do something like:

python3 demo_sw_led.py out_xc7a35tcpg236-1_BASYS3-SWBUT_roi_basev 3 2

This example connects switch 3 to LED 2

Result

 tiles_wires_pips Minitest

tiles_wires_pips Minitest

Missing README.md!

 util Minitest

util Minitest

Missing README.md!

 .db Files

.db Files

Introduction

This section documents how prjxray represents the bitstream database. The databases are plain text files, using either simple line-based syntax or JSON. The databases are located in database/<device_class>/. The settings.sh file contains some configurations used by the tools that generate the database, including the region of interest (ROI, see [[Glossary]]).

	These “.db” files come in two common flavors:

	
	segbits_*.db: encodes bitstream bits

	mask_*.db: which bits are used by a segment? Probably needs to be converted to tile

Also note: .rdb (raw db) is a convention for a non-expanded .db file (see below)

Segment bit positions

Bit positions within a segment are written using the following notation: A two digit decimal number followed by an underscore followed by a two digit decimal number. For example 26_47.

The first number indicates the frame address relative to the base frame address for the segment and ranges from 00 to 35 for Atrix-7 CLB segments.

The second number indicates the bit position width.

Warning

FIXME: Expand this section. We’ve had a couple questions around this, probably good to get a complete description of this that we can point people too. This is probably a good place to talk about tile grid and how it applies to segbit.

segbits_*.db

Tag files document the meaning of individual configuration bits or bit pattern. They contain one line for each pattern. The first word (sequence of non-whitespace characters) in that line is the configuration tag, the remaining words in the line is the list of bits for that pattern. A bit prefixed with a ! marks a bit that must be cleared, a bit not prefixed with a ! marks a bit that must be set.

No configuration tag may include the bit pattern for another tag as subset. If it does then this is an indicator that there is an incorrect entry in the database. Usually this either means that a tag has additional bits in their pattern that should not be there, or that !<bit> entries are missing for one or more tags.

These are created by segmatch to describe bitstream IP encoding.

	Example lines:

	
	CLB.SLICE_X0.DFF.ZINI 31_58
* For feature CLB.SLICE_X0.DFF.ZINI
* Frame: 31
* Word: 58 // 32 = 1
* Mask: 1 << (58 % 32) = 0x04000000
* To set an actual bitstream location, you will need to adjust frame and word by their tile base addresses

	CLBLL_L.SLICEL_X0.AOUTMUX.A5Q !30_06 !30_08 !30_11 30_07
* A multi bit entry. Bit 30_06 should be cleared to use this feature

	INT_L.BYP_BOUNCE5.BYP_ALT5 always
* A pseudo pip: feaure always active => no bits required

	CLBLL_L.OH_NO.BAD.SOLVE <const0>
* Internal only
* Candidate bits exist, but they’ve only ever been set to 0

	CLBLL_L.OH_NO.BAD.SOLVE <const1>
* Internal only
* Candidate bits exist, but they’ve only ever been set to 1

	INT.FAN_ALT4.SS2END0 <m1 2> 18_09 25_08
* Internal only
* segmatch -m (min tag value occurrences) was given, but occurrences are below this threshold
* ie INT.FAN_ALT4.SS2END0 occcured twice, but this is below the acceptable level (say 5)

	INT.FAN_ALT4.SS2END0 <M 6 8> 18_09 25_08
* Internal only
* segmatch -M (min tag occurrences) was given, but total occurrences are below this threshold
* First value (6) is present=1, second value (8) is present=0
* Say -M 15, but there are 6 + 8 = 14 samples, below the acceptable threshold

	Related tools:

	
	segmatch: solves symbolic constraints on a bitstream to produce symbol bitmasks

	dbfixup.py: internal tool that expands multi-bit encodings (ex: one hot) into groups. For example:
* .rdb file with one hot: BRAM.RAMB18_Y1.WRITE_WIDTH_A_18 27_267
* .db: file expanded: BRAM.RAMB18_Y1.WRITE_WIDTH_A_18 !27_268 !27_269 27_267

	parsedb.py: valides that a database is fully and consistently solved
* Optionally outputs to canonical form
* Ex: complains if const0 entries exist
* Ex: complains if symbols are duplicated (such as after a mergedb after rename)

	mergedb.sh: adds new bit entries to an existing db
* Ex: CLB is solved by first solving LUT bits, and then solving FF bits

Interconnect PIP Tags

Tags for interconnect PIPs are stored in the segbits_int_l.db and segbits_int_r.db database files.

Tags that enable interconnect PIPs have the following syntax: <tile_type>.<destination_wire>.<source_wire>.

The <tile_type> may be INT_L or INT_R. The destination and source wires are wire names in that tile type. For example, consider the following entry in segbits_int_l.db: INT_L.NL1BEG1.NN6END2 07_32 12_33

Warning

FIXME: This is probably a good place to reference tileconn as the documentation that explains how wires are connected outside of switchboxes (which is what pips document).

This means that the bits 07_32 and 12_33 must be set in the segment to drive the value from the wire NN6END2 to the wire NL1BEG1.

CLB Configurations Tags

Tags for CLB tiles use a dot-separated hierarchy for their tag names. For example the tag CLBLL_L.SLICEL_X0.ALUT.INIT[00] documents the bit position of the LSB LUT init bit for the ALUT for the slice with even X coordinate within a CLBLL_L tile. (There are 4 LUTs in a slice: ALUT, BLUT, CLUT, and DLUT. And there are two slices in a CLB tile: One with an even X coordinate using the SLICEL_X0 namespace for tags, and one with an odd X coordinate using the SLICEL_X1 namespace for tags.)

ppips_*.db

Pseudo PIPs are PIPs in the Vivado tool, but do not have actual bit pattern. The ppips_*.db files contain information on pseudo-PIPs. Those files contain one entry per pseudo-PIP, each with one of the following three tags: always, default or hint. The tag always is used for pseudo-PIPs that are actually always-on, i.e. that are permanent connections between two wires. The tag default is used for pseudo-PIPs that represent the default behavior if no other driver has been configured for the destination net (all default pseudo-PIPs connect to the VCC_WIRE net). And the tag hint is used for PIPs that are used by Vivado to tell the router that two logic slice outputs drive the same value, i.e. behave like they are connected as far as the routing process is concerned.

mask_*.db

These are just simple bit lists

Example line: bit 01_256

See previous section for number meaning

For each segment type there is a mask file mask_<seg_type>.db that contains one line for each bit that has been observed being set in any of the example designs generated during generation of the database. The lines simply contain the keyword bit followed by the bit position. This database is used to identify unused bits in the configuration segments.

.bits example

Say entry is: bit_0002050b_002_05

2 step process:
* Decode which segment
* Decode which bit within that segment

We have:
* Frame address 0x0002050b (hex)
* Word #: 2 (decimal, 0-99)
* Bit #: 5 (decimal, 0-31)

The CLB tile and the associated interconnect switchbox tile are configured together as a segment. However, configuration data is grouped by segment column rather than tile column. First, note this segment consists of 36 frames. Second, note there are 100 32 bit words per frame (+ 1 for checksum => 101 actual). Each segment takes 2 of those words meaning 50 segments (ie 50 CLB tiles + 50 interconnect tiles) are effected per frame. This means that the smallest unit that can be fully configured is a group of 50 CLB tile + switchbox tile segments taking 4 * 36 * 101 = 14544 bytes. Finally, note segment columns are aligned to 0x80 addresses (which easily fits the 36 required frames).

tilegrid.json defines addresses more precisely. Taking 0x0002050b, the frame base address is 0x0002050b & 0xFFFFFF80 => 0x00020500. The frame offset is 0x0002050b & 0x7F => 0x0B => 11.

So in summary:
* Frame base address: 0x00020500
* Frame offset: 0x0B (11)
* Frame word #: 2
* Frame word bit #: 5

So, with this in mind, we have frame base address 0x00020500 and word # 2. This maps to tilegrid.json entry SEG_CLBLL_L_X12Y101 (has “baseaddr”: [“0x00020600”, 2]). This also yields “type”: “clbll_l” meaning we are configuring a CLBLL_L.

Warning

FIXME: This example is out of date with the new tilegrid format, should update it.

Looking at segbits_clbll_l.db, we need to look up the bit at segment column 11, offset at bit 5. However, this is not present, so we fall back to segbits_int_l.db. This yields a few entries related to EL1BEG (ex: INT_L.EL1BEG_N3.EL1END0 11_05 13_05).

 .json Files

.json Files

Introduction

	This section documents how prjxray represents FPGA fabric. Its primarily composed of two files:

	
	tilegrid.json: list of tiles and how they appear in the bitstream

	tileconn.json: how tiles are connected together

	General notes:

	
	prjxray created names are generally lowercase, while Vivado created names are generally uppercase

	_l and _r entries are generally identical, but probably represent different physical IP block layouts

tilegrid.json

The file tilegrid.json contains lists of all tiles in the device and the configuration segments formed by those tiles. It also documents the membership relationship of tiles and segments.

For each segment this contains the configuration frame base address, and the word offset within the frames, as well as the number of frames for the segment and number of occupied words in each frame.

Warning

FIXME: We should cross link to how to use the base address and word offset.

For each tile this file contains the tile type, grid X/Y coordinates for the tile, and sites (slices) within the tile.

This section assumes you are already familiar with the 7 series bitstream format.

	This file contains two elements:

	
	segments: each entry lists sections of the bitstream that encode part of one or more tiles

	tiles: cores

segments

Segments are a prjxray concept.

	Each entry has the following fields:

	
	baseaddr: a tuple of (base address, inter-frame offset)

	frames: how many frames are required to make a complete segment

	words: number of inter-frame words required for a complete segment

	tiles: which tiles reference this segment

	type: prjxray given segment type

Sample entry:

"SEG_CLBLL_L_X16Y149": {
 "baseaddr": [
 "0x00020800",
 99
],
 "frames": 36,
 "tiles": [
 "CLBLL_L_X16Y149",
 "INT_L_X16Y149"
],
 "type": "clbll_l",
 "words": 2
}

	Interpreted as:

	
	Segment is named SEG_CLBLL_L_X16Y149

	Frame base address is 0x00020800

	For each frame, skip the first 99 words loaded into FDRI

	Since its 2 FDRI words out of possible 101, its the last 2 words

	It spans across 36 different frame loads

	The data in this segment is used by two different tiles: CLBLL_L_X16Y149, INT_L_X16Y149

Historical note:
In the original encoding, a segment was a collection of tiles that were encoded together.
For example, a CLB is encoded along with a nearby switch.
However, some tiles, such as BRAM, are much more complex. For example,
the configuration and data are stored in seperate parts of the bitstream.
The BRAM itself also spans multiple tiles and has multiple switchboxes.

tiles

	Each entry has the following fields:

	
	grid_x: tile column, increasing right

	grid_y: tile row, increasing down

	segment: the primary segment providing bitstream configuration

	sites: dictionary of sites name: site type contained within tile

	type: Vivado given tile type

Sample entry:

"CLBLL_L_X16Y149": {
 "grid_x": 43,
 "grid_y": 1,
 "segment": "SEG_CLBLL_L_X16Y149",
 "sites": {
 "SLICE_X24Y149": "SLICEL",
 "SLICE_X25Y149": "SLICEL"
 },
 "type": "CLBLL_L"
}

	Interpreted as:

	
	Located at row 1, column 43

	Is configured by segment SEG_CLBLL_L_X16Y149

	Contains two sites, both of which are SLICEL

	A CLBLL_L type tile

tileconn.json

The file tileconn.json contains the information how the wires of neighboring tiles are connected to each other. It contains one entry for each pair of tile types, each containing a list of pairs of wires that belong to the same node.

Warning

FIXME: This is a good place to add the tile wire, pip, site pin diagram.

This file documents how adjacent tile pairs are connected.
No directionality is given.

	The file contains one large list. Each entry has the following fields:

	
	grid_deltas: (x, y) delta going from source to destination tile

	tile_types: (source, destination) tile types

	wire_pairs: list of (source tile, destination tile) wire names

Sample entry:

{
 "grid_deltas": [
 0,
 1
],
 "tile_types": [
 "CLBLL_L",
 "HCLK_CLB"
],
 "wire_pairs": [
 [
 "CLBLL_LL_CIN",
 "HCLK_CLB_COUT0_L"
],
 [
 "CLBLL_L_CIN",
 "HCLK_CLB_COUT1_L"
]
]
}

	Interpreted as:

	
	Use when a CLBLL_L is above a HCLK_CLB (ie pointing south from CLBLL_L)

	Connect CLBLL_L.CLBLL_LL_CIN to HCLK_CLB.HCLK_CLB_COUT0_L

	Connect CLBLL_L.CLBLL_L_CIN to HCLK_CLB.HCLK_CLB_COUT1_L

	A global clock tile is feeding into slice carry chain inputs

 Index

Index

 A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	ASIC

B

 	
 	basic element

 	basic logic element

 	BEL

 	
 	Bitstream

 	BLE

 	Block RAM

C

 	
 	CFA

 	CLB

 	Clock

 	Clock backbone

 	
 	Clock domain

 	Clock region

 	Clock spine

 	Column

 	Configurable logic block

D

 	
 	Database

F

 	
 	Fabric sub region

 	FF

 	Flip flop

 	FPGA

 	
 	Frame

 	Frame base address

 	FSR

 	Fuzzer

H

 	
 	Half

 	HDL

 	
 	Horizontal clock row

 	HROW

I

 	
 	I/O block

 	
 	INT

 	Interconnect tile

L

 	
 	LUT

M

 	
 	MUX

N

 	
 	Node

P

 	
 	PIP

 	Place and route

 	
 	PnR

 	Programmable interconnect point

R

 	
 	Region of interest

 	
 	ROI

 	Routing fabric

S

 	
 	Segment

 	Site

 	
 	Slice

 	Specimen

T

 	
 	Tile

W

 	
 	Wire

 	
 	Word

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Project X-Ray

 		
 Overview

 		
 Configuration

 		
 Addressing

 		
 CLB, I/O, CLB

 		
 Block RAM content

 		
 CFG_CLB

 		
 Loading sequence

 		
 Other

 		
 Bitstream format

 		
 Interconnect PIPs

 		
 Fake PIPs

 		
 Regular PIPs

 		
 VCC Drivers

 		
 Bidirectional PIPs

 		
 Distributed RAMs (DRAM / SLICEM)

 		
 Functions

 		
 Modes

 		
 Ports

 		
 Configuration

 		
 Segbits for modes

 		
 Ports for modes

 		
 Techlib macros

 		
 Glossary

 		
 References

 		
 Xilinx documents one should be familiar with:

 		
 Other documentation that might be of use:

 		
 Project X-Ray

 		
 Quickstart Guide

 		
 Step 1:

 		
 Step 2:

 		
 Step 3:

 		
 Step 4:

 		
 Step 5:

 		
 Step 6:

 		
 Step 7:

 		
 Step 8:

 		
 Step 9:

 		
 C++ Development

 		
 Process

 		
 Parts

 		
 Minitests

 		
 Experiments

 		
 Fuzzers

 		
 Tools & Libs

 		
 Utils

 		
 Third Party

 		
 Database

 		
 Current Focus

 		
 TODO List

 		
 Contributing

 		
 Sending

 		
 License

 		
 Code of Conduct

 		
 Sign your work

 		
 Contributing to the docs

 		
 Fuzzers

 		
 Configurable Logic Blocks (CLB)

 		
 clb-ffconfig Fuzzer

 		
 clb-ffsrcemux Fuzzer

 		
 clb-lutinit Fuzzer

 		
 clb-n5ffmux Fuzzer

 		
 clb-ncy0 Fuzzer

 		
 clb-ndi1mux Fuzzer

 		
 clb-nffmux Fuzzer

 		
 clb-noutmux Fuzzer

 		
 clb-precyinit Fuzzer

 		
 clb-ram Fuzzer

 		
 Block RAM (BRAM)

 		
 bram-cascades Fuzzer

 		
 BRAM Configuration

 		
 BRAM Data

 		
 bram-fifo-config Fuzzer

 		
 bram36-config Fuzzer

 		
 Input / Output (IOB)

 		
 IOB Fuzzer

 		
 iob-ilogic Fuzzer

 		
 iob-ologic Fuzzer

 		
 Clocking (CMT, PLL, BUFG, etc)

 		
 clk-bufg-config Fuzzer

 		
 BUFG interconnect fuzzer

 		
 clk-hrow-config Fuzzer

 		
 clk-hrow-pips Fuzzer

 		
 clk-rebuf-pips Fuzzer

 		
 HCLK_CMT interconnect fuzzer

 		
 Fuzzer for INT PIPs driving the CLK wires

 		
 Fuzzer for PIPs in HCLK titles

 		
 MMCM

 		
 Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

 		
 Programmable Interconnect Points (PIPs)

 		
 int-imux-gfan Fuzzer

 		
 int-piplist Fuzzer

 		
 BUFG interconnect fuzzer

 		
 clk-hrow-pips Fuzzer

 		
 clk-rebuf-pips Fuzzer

 		
 HCLK_CMT interconnect fuzzer

 		
 Fuzzer for bidirectional INT PIPs

 		
 Fuzzer for INT PIPs driving the CLK wires

 		
 Fuzzer for INT PIPs driving the CTRL wires

 		
 Fuzzer for the ALT_FAN.*GFAN PIPs

 		
 Fuzzer for INT PIPs driving the GFAN wires with GND

 		
 Fuzzer for PIPs in HCLK titles

 		
 Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

 		
 Fuzzer for the remaining INT PIPs

 		
 Generic fuzzer for INT PIPs

 		
 piplist Fuzzer

 		
 ppips Fuzzer

 		
 Hard Block Fuzzers

 		
 XADC Fuzzer

 		
 Grid and Wire

 		
 Tilegrid Fuzzer

 		
 ordered_wires Fuzzer

 		
 get_counts Fuzzer

 		
 dump_all Fuzzer

 		
 Timing

 		
 Timing analysis fuzzer (timfuz)

 		
 All Fuzzers

 		
 bram-cascades Fuzzer

 		
 BRAM Configuration

 		
 BRAM Data

 		
 bram-fifo-config Fuzzer

 		
 bram36-config Fuzzer

 		
 clb-ffconfig Fuzzer

 		
 clb-ffsrcemux Fuzzer

 		
 clb-lutinit Fuzzer

 		
 clb-n5ffmux Fuzzer

 		
 clb-ncy0 Fuzzer

 		
 clb-ndi1mux Fuzzer

 		
 clb-nffmux Fuzzer

 		
 clb-noutmux Fuzzer

 		
 clb-precyinit Fuzzer

 		
 clb-ram Fuzzer

 		
 clk-bufg-config Fuzzer

 		
 BUFG interconnect fuzzer

 		
 clk-hrow-config Fuzzer

 		
 clk-hrow-pips Fuzzer

 		
 clk-rebuf-pips Fuzzer

 		
 MMCM

 		
 Clock Management Tile (CMT) - Phase Lock Loop (PLL) Fuzzer

 		
 dsp-mskpat Fuzzer

 		
 dump_all Fuzzer

 		
 fifo-config Fuzzer

 		
 get_counts Fuzzer

 		
 HCLK_CMT interconnect fuzzer

 		
 init-db Fuzzer

 		
 int-imux-gfan Fuzzer

 		
 int-piplist Fuzzer

 		
 IOB Fuzzer

 		
 iob-ilogic Fuzzer

 		
 iob-ologic Fuzzer

 		
 XADC Fuzzer

 		
 ordered_wires Fuzzer

 		
 part-yaml Fuzzer

 		
 pins Fuzzer

 		
 Fuzzer for bidirectional INT PIPs

 		
 Fuzzer for INT PIPs driving the CLK wires

 		
 Fuzzer for INT PIPs driving the CTRL wires

 		
 Fuzzer for the ALT_FAN.*GFAN PIPs

 		
 Fuzzer for INT PIPs driving the GFAN wires with GND

 		
 Fuzzer for PIPs in HCLK titles

 		
 Fuzzer for INT LOGIC_OUTS -> IMUX PIPs

 		
 Fuzzer for the remaining INT PIPs

 		
 Generic fuzzer for INT PIPs

 		
 piplist Fuzzer

 		
 ppips Fuzzer

 		
 Tilegrid Fuzzer

 		
 Timing analysis fuzzer (timfuz)

 		
 Minitests

 		
 CLB_BUSED Minitest

 		
 Purpose

 		
 Result

 		
 clb-carry_cin_cyinit Minitest

 		
 clb-configs Minitest

 		
 CLB_MUXF8 Minitest

 		
 Purpose

 		
 General notes:

 		
 clkbuf Minitest

 		
 eccbits Minitest

 		
 FIXEDPNR Minitest

 		
 Purpose

 		
 Result

 		
 lvb_long_mux Minitest

 		
 nodes_wires_list Minitest

 		
 FASM Proof of Concept using Vivado Partial Reconfig flow

 		
 Usage

 		
 Using Vivado to generate .fasm

 		
 PICORV32-v Minitest

 		
 Purpose

 		
 Result

 		
 PICORV32-y Minitest

 		
 Purpose

 		
 Result

 		
 pip-switchboxes Minitest

 		
 ROI_HARNESS Minitest

 		
 Purpose

 		
 Quickstart

 		
 How it works

 		
 Result

 		
 tiles_wires_pips Minitest

 		
 util Minitest

 		
 Tools

 		
 .db Files

 		
 Introduction

 		
 Segment bit positions

 		
 segbits_*.db

 		
 Interconnect PIP Tags

 		
 CLB Configurations Tags

